
Technische Universität München, Fakultät für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste
Prof. Dr.-Ing. Georg Carle

IDP, HiWi

Testing and Validating Tests
for Reproducible Experiments

which are needed for high-speed operation mode, re-
quire purchasing a license. In netmap user space ap-
plications do not have direct access to the NIC’s regis-
ters. This is a safety precaution as a misconfigured NIC
can crash the whole system by corrupting memory [20].
This restriction in netmap is critical as it is designed to
be included in an operating system: netmap is already
part of the FreeBSD kernel [19]. However, MoonGen
needs to access NIC registers directly to implement re-
quirement (R4).

3.2 Scripting with LuaJIT
MoonGen must be as flexible as possible (R3). There-

fore, MoonGen moves the whole packet generation logic
into user-defined scripts as this ensures the maximum
possible flexibility. LuaJIT was selected because related
work shows that it is suitable for high-speed packet pro-
cessing tasks [6] without impacting the overall perfor-
mance (R2).

Its fast and simple foreign function interface allows
for an easy integration of C libraries like DPDK [17].

LuaJIT may introduce unpredictable pause times due
to garbage collection and compilation of code during
run time. This can lead to exhausted receive bu�ers or
starving transmission bu�ers.

We disable garbage collection by default in MoonGen
to avoid pause times. Typical scripts in MoonGen do
not rely on dynamic allocation in the transmit logic
and run for a predetermined time. Nevertheless, scripts
can explicitly start the garbage collector if necessary,
e.g. between test runs of a longer experiment.

Pause times introduced by the JIT compiler are in
the range of “a couple of microseconds” [18] and can be
handled by the NIC bu�ers. The currently supported
NICs feature bu�er sizes in the order of hundreds of
kilobytes [9, 10, 11]. For example, the smallest bu�er on
the X540 chip is the 160 kB transmit bu�er, which can
store 128µs of data at 10 GbE. This e�ectively conceals
short pause times.

3.3 Hardware Architecture
Understanding how the underlying hardware works is

important for the design of a high-speed packet genera-
tor. The typical operating system socket API hides im-
portant aspects of networking hardware that are impor-
tant for the design of low-level packet processing tools.

A central feature of modern commodity NICs is sup-
port for multi-core CPUs. Each NIC supported by
DPDK features multiple receive and transmit queues
per network interface. This is not visible from the
socket API of the operating system as it is handled by
the driver [8]. For example, both the X540 and 82599
10 GbE NICs support 128 receive and transmit queues.
Such a queue is essentially a virtual interface and they
can be used independently from each other. [10, 11]

MoonGen Core

DPDK
U

se
rs

cr
ip

t
M

oo
nG

en
H

W NIC NIC

Port

Q0 ... Qn

Port

Userscript

Lua VM

Userscript
spawn

Userscript
slave

Lua VM

Userscript
master

Lua VM

config API data API

config API data API

Figure 1: MoonGen’s architecture

Multiple transmit queues allow for perfect multi-core
scaling of packet generation (up to the number of avail-
able queues and CPU cores). Each configured queue can
be assigned to a single CPU core in a multi-core packet
generator. Receive queues are also statically assigned
to threads and the incoming tra�c is distributed via
configurable filters (e.g. Intel Flow Director) or hashing
on protocol headers (e.g. Receive Side Scaling). [10, 11]

Commodity NICs also often support timestamping
and rate control in hardware. This allows us to fulfill
(R1) without violating (R4).

MoonGen does not run on arbitrary commodity hard-
ware, we are restricted to hardware that is supported by
DPDK [12] and that o�ers support for these features.
We currently support hardware features on Intel 82599,
X540, and 82580 chips.

Other NICs that are supported by DPDK but not yet
explicitly by MoonGen can also be used, but without
hardware timestamping and rate control.

3.4 Software Architecture
MoonGen’s core is a Lua wrapper for DPDK that pro-

vides utility functions required by a packet generator.
The MoonGen API comes with functions that config-
ure the underlying hardware features like timestamping
and rate control. About 80% of the current code base
is written in Lua, the remainder in C.

Although our current focus is on packet generation,
MoonGen can also be used to implement arbitrary packet
processing tasks in Lua, e.g. packet forwarding or tra�c
analysis.

Figure 1 shows the architecture of MoonGen. It runs

3

MoonGen ist ein am Lehrstuhl
entwickelter Paketgenerator für
Netzwerkexperimente auf mo-
derner Netzwerkhardware (40
GBit Ethernet). Einige Features
von MoonGen, wie zum Bei-
spiel genaue Latenzmessungen,
benötigen explizite Unterstützung
durch die verwendete Netzwerk-
karte. Für sauberes wissenschaft-
liches Arbeiten ist es wichtig, dass
Experimente reproduzierbar sind.
Dies soll in MoonGen möglichst
unabhängig von der verwendeten
Hardware und Softwareversion
möglich sein. Aufgrund der Hard-
wareabhängigkeit lassen sich
jedoch klassische Methoden des
Testens nicht ohne Weiteres auf MoonGen anwenden.

Motivation

Ziel der Arbeit ist es relevante Tests zu identifizieren und implementieren. Hierfür
muss ein bestehendes Testframework erweitetert werden, um den speziellen
Anforderungen von MoonGen gerecht zu werden. Unter anderem müssen für
verschiedene Tests aus der vorhandenen Netzwerkhardware automatisch pas-
sende Netzwerkkarten gewählt werden und Tests auf verschiedenen Karten au-
tomatisch wiederholt werden.

Aufgabe

Paul Emmerich emmericp@net.in.tum.de

http://go.tum.de/368485

Kontakt

mailto:emmericp@net.in.tum.de
http://go.tum.de/368485

