
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2022-01-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2021 March 5, 2021 – August 8, 2021

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2021

Munich, March 5, 2021 – August 8, 2021

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2022-01-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Summer Semester 2021

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM SS 21
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, March 5, 2021 – August 8, 2021
ISBN: 978-3-937201-73-3

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2022-01-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2022-01-1
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2021, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Summer Semester 2021. Each semester, the seminar takes place in two
different ways: once as a block seminar during the semester break and once in the course of the semester.
Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterwards present the results to the other course participants.
To improve the quality of the papers we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar we award one with the Best Paper Award. For this semester the
arwards where given to Christopher Pfefferle with the paper IEEE 802.1Qcr Asynchronous Traffic Shaping
with Linux Traffic Control and Paul Schaaf with the paper Analysis of Proof of Stake flavors with regards
to The Scalability Trilemma .

Some of the talks were recorded and published on our media portal https://media.net.in.tum.de.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, November 2021

Georg Carle Stephan Günther Benedikt Jaeger

III

https://media.net.in.tum.de
https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Jonas Andre (andre@net.in.tum.de)
Technical University of Munich

Juliane Aulbach (aulbach@net.in.tum.de)
Technical University of Munich

Stephan Günther (guenther@tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Filip Rezabek (rezabek@net.in.tum.de)
Technical University of Munich

Patrick Sattler (sattler@net.in.tum.de)
Technical University of Munich

Christoph Schwarzenberg (schwarzenberg@net.in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Florian Wiedner (wiedner@net.in.tum.de)
Technical University of Munich

Johannes Zirngibl (zirngibl@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ss21/seminars/

V

https://net.in.tum.de/teaching/ss21/seminars/

Contents

Block Seminar

Simulation of WiFi Networks on Hardware . 1
Sebastian Keller (Advisor: Jonas Andre, Florian Wiedner)

Challenges with BGPSec . 5
Jan Oesterle (Advisor: Holger Kinkelin, Filip Rezabek)

Asynchonous Traffic Shaping with Linux traffic control . 11
Christopher Pfefferle (Advisor: Florian Wiedner, Christoph Schwarzenberg)

Certificate Revocation . 15
Raphael Schmid (Advisor: Juliane Aulbach, Patrick Sattler)

Optimizations for Secure Multiparty Computation Protocols . 19
Leilani Hu-Mai Tam von Burg (Advisor: Christopher Harth-Kitzerow)

Recent Activity in P4 . 25
Irina Tsareva (Advisor: Dominik Scholz, Sebastian Gallenmüller)

Seminar

A Survey on Domain Impersonation . 31
Derin Amal (Advisor: Juliane Aulbach, Johannes Zirngibl)

Analysis of Wikipedia External Links . 37
Onur Cakmak-Simic (Advisor: Patrick Sattler, Johannes Zirngibl)

Survey on SR-IOV performance . 43
Maximilian Fischer (Advisor: Florian Wiedner)

Towards General Sliding Window Stream Analysis . 47
Simon Hanssen (Advisor: Kilian Holzinger, Henning Stubbe)

Tracing the Execution Path in mac80211 . 53
Pooja Parasuraman (Advisor: Jonas Andre, Stephan Günther)

TCP Congestion Control Fingerprinting . 57
Kevin Ploch (Advisor: Benedikt Jaeger)

Analysis of PoS Flavors With Regards To The Scalability Trilemma 63
Paul Simon Schaaf (Advisor: Filip Rezabek, Holger Kinkelin)

Survey on Back-Pressure Based Routing . 69
Ke Wang (Advisor: Christoph Schwarzenberg, Florian Wiedner)

An Implementation of the Babel Routing Protocol for ns3 . 73
Malte von Ehren (Advisor: Jonas Andre, Florian Wiedner)

VII

Simulation of WiFi Mesh Networks with Mobile Nodes

Sebastian Keller, Jonas Andre∗, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: sebastian2.keller@tum.de, andre@net.in.tum.de, wiedner@net.in.tum.de

Abstract—Investigation of WiFi networks can be performed
with real testbeds or with the help of simulation software.
Real testbeds are expensive and it is difficult to obtain
consistent and reproducible test results. The results of
simulated tests are only comparable to the real world to
some extend. The advantages of simulators are lower costs
and reproducibility. Simulators are particularly suitable for
investigating WiFi meshes with mobile nodes, as these are
difficult to implement with real testbeds.

There are different software solutions for network vi-
sualization available. This paper describes two network
simulators, ns-3 and OMNET++, which are compared in
terms of their capabilities to simulate WiFi mesh networks
with mobile nodes. The comparison shows that ns-3 is better
when considering performance and customization, while
OMNET++ offers more features related to mesh networks
with mobile nodes, e.g. extensive visualizations. Still, both
provide no implementation for the latest WiFi standards.

Index Terms—Wifi-Networks, ns-3, OMNET++, Simulations,
Wireless Mesh Network

1. Introduction

Wireless communication is a key-technology for next
generation devices of any kind. Increasing bandwidth and
range of WiFi allows more and more applications to
switch from wired connections to wireless ones. New
medical applications use WiFi for in-body sensors [1],
autonomous driving requires real-time communication be-
tween multiple road users, and wireless communication
enables new features for drone swarms [2].

Simulation of networks is an attempt to imitate real
properties of digital communications. They are used to
speed up the development process of new WiFi features
as well as to determine anomalies earlier. Simulation of
wired networks is less complex, e.g. influence of the
environment is less dominant and the complexity of the
hardware is less. WiFi networks suffer of interference,
connection losses, and retransmissions. Thus, simulation
of WiFi networks is more difficult than simulation of
wired networks. The data collected from a simulated wire-
less network can only be compared to real-world network
in some extend.

Another approach to investigate WiFi networks are
real testbeds. These testbeds are rather expensive, the
environment needs to be screened from the surrounding
environment to avoid inferences of the surrounding. Thus,
the results are less reproduceable than results from simu-
lations.

When it comes to the simulation of dynamic mesh
networks, additional problems arise [2]:

1) Link-quality is not constant over time due to the
limited range and moving links.

2) Links can break because nodes might move out
of range. The reachable neighbours of each node
change over time.

3) Routing may change, e.g. because a link loses the
original communication partner, but another link
is in range, which can be used for communica-
tion.

Figure 1 shows an example of a flying Ad-Hoc net-
work which illustrates the stated problems. The WiFi
coverage of each drone is illustrated by the red circles.
While the drones are flying their reachable neighbours
change. It must be assured, that at least one drone can
connect with the gateway drone, which connects the whole
swarm with the internet using a cellular connection. This
illustrates how an area without cellular coverage can be
covered with a WiFi network in case of an emergency.

Figure 1: Flying Ad-Hoc network example [2].

The development of new wireless communication
standards causes rapid progress in terms of transmission
rates and new features. Thus, there exist no simulation
which is capable of simulating all standards. The youngest
simulation software is ns-3. It is the successor of ns-2 with
the focus on scalability and performance. ns-3 is open
source and it has a huge community which allows fast
development of new models. OMNET++ is a commercial
solution for network simulation which is free for non-
commercial use. There are other simulation software with
different focus, e.g. OPNet, Castalia, Qualnet, Tetcos Net-
Sim, OpenSim, MIMIC Wireless Simulator, and the Wire-
less Sensor Networks Simulation Extension for Matlab.

In Chapter 2 related work on the topic of WiFi mesh
virtualization is presented. The concepts behind ns-3 and
OMNET++ are described in Chapter 3. Afterwards the
benefits and drawbacks of each simulation software are
compared in Chapter 4. In the last Chapter a conclusion

Seminar IITM SS 21,
Network Architectures and Services, November 2021 1 doi: 10.2313/NET-2022-01-1_01

is drawn containing a short summary of the benefits and
drawbacks of each.

2. Related work

The limitations of ns-3 are explained in detail in
"Network Simulation and its Limitations" [3]. According
to their research, wireless network simulation provides
only limited credibility and scalability. Credibility can
be increased by limiting the simulation results only to
certain aspects of the network, performing regressions
tests, reusing existing and tested code, and by comparing
the simulation results with the results from a real testbed.

Scalability is another issue for real testbeds, as the
testbed is going to be more costly with increasing number
of nodes. Simulations have also limited scalability. This
limit can be increased by parallel computing or distributed
network simulation.

Other publications present ways to extend the current
available models of ns-3 with features, which are neces-
sary to virtualize WiFi Mesh Networks. Hany Assasa et al.
show a solution for beamforming in [4]. They extended
the existing ns-3 model for IEEE 802.11ad to support
multiple antenna beamforming.

As WiFi mesh virtualization has multiple usecases,
there exist several publications which focus on specific
applications like flying Ad-Hoc network systems [5] or
Wireless Body Area Networks (WBAN) [6]. Dmitrii
Dugaev and Eduard Siemens demonstrate the use of WiFi
meshes to enable communication between multiple flying
drones in [5]. The key challenges of this application are
the points 1, 2, and 3 stated in Chapter 1. WBANs are used
to monitor body measurements like electrocardiograms
(ECG) or electroencephalograms (EEG). Beom-Su Kim
et. al. use ns-3 to build a realistic WBAN simulation
system [6].

The comparison of the virtualization with the real-
world is necessary to validate simulation models. This has
been done by Dmitrii Dugaev and Eduard Siemens in [7].
They compared experiments in ns-3 with a real testbed.
They conclude that the physical, interference, and channel
models are sufficiently accurate and they state that it can
be used to evaluate performance parameters of "differ-
ent wireless mesh networks with various topologies" [7].
Also, the ns-3 model for hybrid routing schemes and link
establishing algorithms can be used for this purpose.

3. Concepts

As already mentioned in Chapter 1, there exist differ-
ent network simulators. Several studies [8]–[12] compare
different network simulators to simulate wireless net-
works. The following chapters will focus on OMNET++
and ns-3 as they both provide good performance, are
actively maintained, and free for academic use.

3.1. ns-3

ns-3 is a discrete-event network simulation tool, i.e.
each step in simulation time is assigned to every active
event, events are triggered consecutively in discrete steps.
It is published under the GNU GPLv2 license and thus

the source code is available. The core of ns-3 is written
in C++ while the scripting interface is written in Python.
It is developed for research and educational purposes. In
comparison to its predecessor ns-2, ns-3 is developed with
focus on scalability and performance.

ns-3 has modular structure containing the following
main features [13]:

1) Nodes: a communication point, e.g. router, smart-
phone

2) Channels: interconnect multiple nodes, e.g.
PointToPointChannel or WifiChannel

3) NetDevices: represent a physical interface on a
node, e.g. an Ethernet interface

4) Packets: packets are sent over channels using
NetDevices

5) Sockets and Applications: user defined pro-
cesses that generate packets

These components are used to define the network
topology. Figure 2 shows a schematic configuration in
ns-3, which illustrates the structure of a ns-3 model. For
simulation of WiFi networks, the channel is a WifiChannel
and the nodes are WiFi clients with implemented appli-
cations, which can communicate with other nodes using
WiFi.

Figure 2: data flow model in ns-3 simulation at a high-
level [14].

The simulation needs to be initialized with events that
will trigger the creation of further events. While the sim-
ulation is running, it is necessary that test results can be
collected. ns-3 includes a tracing subsystem which allows
to measure and log data in a flexible way. The tracing
subsystem can save the data collections in common data
formats like pcap. This makes analysation with third-party
software like Wireshark [15] possible. The simulation is
terminated by either a specified simulation time, or if the
list of upcoming events is empty.

ns-3 has a large community, which continuously im-
proves existing models and adds new models. This allows
to simulate the latest standards. Thus, there is a large
model library available for ns-3.

ns-3 itself does not provide any graphical user in-
terface. This might be an issue on the first glance, but
nevertheless it has proven to be comprehensible and easy
to use. There exist several third-party visualization tools
like NetAnim to animate tracing data, Gnuplot for general
visualizations or the already mentioned Wireshark.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 2 doi: 10.2313/NET-2022-01-1_01

3.2. OMNET++

OMNET++ is a discrete-event simulator written in
C++, just like ns-3. It is open source, but only free
for non-commercial purposes. The commercial version of
OMNET++ is OMNEST. It was not originally developed
as a network simulator, but as a general purpose discrete
event simulator. In contrast to ns-3, OMNET++ provides
a graphical user interface called OMNET++ IDE. The
OMNET++ IDE can be used to create NED files, which
are used to define components. This includes the definition
of modules, networks, and connections. OMNET++ IDE
also includes a source editor as an alternative.

The functionality of the modules is implemented in
C++. Each module is represented by a class which han-
dles the initialization of a module and the overall be-
haviour of the module.

This network definition consisting of the NED files
and C++ classes is then used to run the simulation.
OMNET++ IDE can be used to visualize the progress
of the current simulation in detail.

In contrast to ns-3, OMNET++ provides many inte-
grated visualization tools like the TransportRouteVisual-
izer to visualize traffic passing through the transport layers
of multiple endpoints, the NetworkRouteVisualizer to visu-
alize network layer traffic, Ieee80211Visualizer for IEEE
802.11 networks and MobilityVisualizer to visualize the
mobility of nodes. Figure 3 shows the network Tictoc14
with 6 nodes during a TicToc simulation visualized with
OMNET++. Packets are illustrated with a red dot, which
moves between the nodes during simulation. This example
counts the number of received and sent packets.

Figure 3: Example network visualization in
OMNET++ [16].

4. Comparison

The key challenges for the simulation of Wifi Mesh
networks with dynamic link-quality are:

1) support for multiple antenna beamforming
2) support for Ad-Hoc routing
3) simulation of node-movement, i.e. their dynami-

cally changing link-quality

4) simulation of packet-loss and retransmissions
5) simulation of interference

The capabilities of ns-3 and OMNET++ with respect to
these requirements are outlined in this Chapter.

4.1. Multiple antenna beamforming

Multiple antenna beamforming is a technique that
improves the signal quality with the same energy require-
ments. This is achieved by directional signal transmis-
sions. The INET Framework of OMNET++ supports var-
ious directional antenna, transmitters, and receivers. The
RadioVisualizer module of OMNET++ includes visualiza-
tions of all available antenna models. Nodes with multiple
different antennas can be modeled by adding multiple
wireless interfaces and assigning different antenna models
to them.

As already mentioned in Chapter 2 ns-3 has no built-
in support for multiple antenna beamforming, but this
functionality has been implemented in [4].

4.2. Ad-Hoc routing

The IEEE 802.11s standard is an extension of the
IEEE 802.11 MAC standard which was developed to
support Ad-Hoc networks with minimum hardware re-
quirements and reduced energy consumption. The IEEE
802.11 specification released in 2012 also includes support
for mesh routing.

OMNET++ supports Ad-Hoc routing including several
routing protocols AODV, DSDV, DYMO, and GPSR. Its
802.11 models includes the Ieee80211MgmtAdhoc man-
agement component for Ad-Hoc mode stations [16].

ns-3 does support the Ad-Hoc routing protocols
AODV, DSDV, DSR, and OLSR [17]. The different pro-
tocol implementations are compared in [18]. The results
showed that OLSR has the best performance. ns-3 supports
802.11s besides many other WiFi specifications, but still
lacking the latest IEEE 802.11ay standard.

4.3. Node mobility

OMNET++ offers built-in mobility models including
stationary, deterministic, trace-based, stochastic, and com-
bined models. By default the antenna mobility model uses
the same mobility model as the node itself, but it is also
possible to define independent models. This allows e.g. to
model a vehicle with multiple directional antennas located
at different positions in the vehicle. The MobilityVisualizer
allows to visualize the motion of mobile nodes.

ns-3 includes mobility models to define the position,
velocity, and acceleration of nodes. It does not support
movement along the Z dimension currently. An approach
to extend the mobility model to three dimensions is pre-
sented in [19].

4.4. Packet-loss and retransmissions

The simulation of packet-losses and retransmission is
necessary to identify poor connectivity, overloaded nodes,
or misconfigured nodes.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 3 doi: 10.2313/NET-2022-01-1_01

Simulator OMNET++ ns-3

Open Source Mostly Yes
Free for commercial use No Yes
Wireless support Yes Yes
Scalability Medium Good
Performance Medium Good
Documentation Great Good
Visualization Included/Good Third-party/Medium
Multi antenna beamforming Yes Possible
Ad-Hoc support Yes Yes
Mobility support Yes Yes
Packet loss/retransmissions Yes Yes

TABLE 1: ns-3 and OMNET++ Comparison

OMNET++ supports packet drops and retransmissions
including a visualization for packet drops with the Pack-
etDropVisualizer module.

ns-3 does support packet losses and retransmissions,
too. It has an included PacketLossCounter class, which
can be used to count the number of lost packets.

4.5. Interference

Interference in WiFi signals can have many reasons.
It is mostly caused by multiple overlapping WiFi signals
using the same channel. This can cause slower networking
speed, higher latencies, retransmissions, interrupted con-
nections, and the inability to connect to a WiFi network.

OMNET++ offers debugging tools to investigate in-
terference including many different visualizations.

ns-3 does also support interference. The Interference-
Helper class helps to trace many information relevant to
investigate the interference.

5. Conclusion and future work

A comparison of ns-3 and OMNET++ with respect to
WiFi meshes with mobile nodes is presented in this paper.
Key features a simulator needs to support are outlined.
ns-3 offers slightly better performance. One drawback is
the missing visualization, but it is still possible to use
third-party tools. The possibility to create common tracing
files that can be viewed in third-party tools like Wireshark
overcomes this issue only to some extent. In general ns-3
can be considered to be a more low-level simulation than
OMNET++.

OMNET++ has a good documentation including well
documented examples. The examples in the documenta-
tion of ns-3 are less user-friendly, but the documentation
of the modules and classes is detailed. One key-feature is
the included visualization tool. Table 1 lists a comparison
of the most relevant features. As OMNET++ is only free
for non-commercial use, ns-3 might be the better choice
in commercial applications. Both support the simulation
of wireless communication, whilst ns-3 supports more
WiFi standards in a more accurate implementation. Ad-
Hoc networks can be simulated by both tools. Simulation
of multi antenna beamforming, which might be necessary
for Ad-Hoc networks, is only integrated in OMNET++.
The implementation of [4] can be used to add support for
multi antenna beamforming in ns-3, too. ns-3 is better in
terms of scalability. It provides less memory consumption
and simulation time than OMNET++.

This paper focuses more on a raw feature compari-
son of the simulation tools than on the test results the
simulators produce. Future work needs to investigate the

comparability of simulation results with test results gained
from a real testbed.

References

[1] D. Rathee, S. Rangi, P. Chakarvarti, and V. Singh, “Recent trends
in wireless body area network (wban) research and cognition based
adaptive wban architecture for healthcare,” Health Technol., pp. 1–
6, 05 2014.

[2] J. Sae, S. F. Yunas, and J. Lempiainen, “Coverage aspects of tem-
porary lap network,” in 2016 12th Annual Conference on Wireless
On-demand Network Systems and Services (WONS), 2016, pp. 1–4.

[3] S. Rampfl, “Network Simulation and its Limitations,” Lehrstuhl
Netzarchitekturen und Netzdienste, Fakultät für Informatik, Tech-
nische Universität München, 2013.

[4] H. Assasa, J. Widmer, T. Ropitault, and N. Golmie, “Enhancing the
ns-3 ieee 802.11ad model fidelity: Beam codebooks, multi-antenna
beamformig training, and quasi-deterministic mmwave channel,”
in Proceedings of the 2019 Workshop on Ns-3, ser. WNS3 2019.
Association for Computing Machinery, 2019, p. 33–40. [Online].
Available: https://doi.org/10.1145/3321349.3321354

[5] E. Erkalkan, V. Topuz, and A. Buldu, “Heuristic algorithms testbed
for flying ad-hoc network systems,” 2020, pp. 1–4.

[6] B.-S. Kim, T.-E. Sung, and K.-I. Kim, “An NS-3 Implementation
and Experimental Performance Analysis of IEEE 802.15.6 Stan-
dard under Different Deployment Scenarios,” Inernational Journal
of Environmental Research and Public Health, 2020.

[7] D. Dugaev and E. Siemens, “A wireless mesh network ns-3
simulation model: Implementation and performance comparison
with a real test-bed,” 2014. [Online]. Available: http://dx.doi.org/
10.25673/5633

[8] A. ur Rehman Khan, S. M. Bilal, and M. Othman, “A performance
comparison of network simulators for wireless networks,” CoRR,
vol. abs/1307.4129, 2013, [Online; accessed 21-April-2021].
[Online]. Available: http://arxiv.org/abs/1307.4129

[9] S. Mehta, N. Ullah, M. H. Kabir, M. N. Sultana, and K. S. Kwak,
“A case study of networks simulation tools for wireless networks,”
in 2009 Third Asia International Conference on Modelling Simu-
lation, 2009, pp. 661–666.

[10] V. Venkataramanan and S. Lakshmi, “A case study of various
wireless network simulation tools,” International Journal of Com-
munication Networks and Information Security (IJCNIS), vol. 10,
no. 2, 2018, [Online; accessed 21-April-2021]. [Online]. Available:
https://www.ijcnis.org/index.php/ijcnis/article/view/3261

[11] N. Garg, “Network Simulators: A Case Study,” International Jour-
nal of Advanced Research in Computer Science and Software
Engineering (IJARCSSE), vol. 5, 1 2015.

[12] A. S. Toor and A. K. Jain, “A survey on wireless network
simulators,” Bulletin of Electrical Engineering and Informatics,
vol. 6, no. 1, pp. 62–69, 2017, [Online; accessed 21-April-2021].
[Online]. Available: https://beei.org/index.php/EEI/article/view/568

[13] ns 3 Project, “ns3 Softare Architecture,” https://www.nsnam.org/
docs/architecture.pdf, 2007, [Online; accessed 26-March-2021].

[14] B. Ren, “High Fidelity Experiment Platform for
Mobile Networks,” https://www.researchgate.net/figure/
Data-flow-model-in-NS-3-Simulation-at-a-High-level_fig3_
322515716, [Online; accessed 26-March-2021].

[15] “Wireshark Website,” https://www.wireshark.org/, [Online; ac-
cessed 23-April-2021].

[16] “OMNET++ Documentation,” https://docs.omnetpp.org/tutorials/
tictoc/part4/, [Online; accessed 26-March-2021].

[17] “ns-3 Documentation,” https://www.nsnam.org/docs/release/3.17,
[Online; accessed 23-April-2021].

[18] M. Ikeda, M. Hiyama, E. Kulla, and L. Barolli, “Mobile ad-
hoc network routing protocols performance evaluation using ns-3
simulator,” in 2011 Third International Conference on Intelligent
Networking and Collaborative Systems, 2011, pp. 14–20.

[19] D. Broyles, A. Jabbar, and J. Sterbenz, “Design and analysis of
a 3–d gauss-markov mobility model for highly-dynamic airborne
networks,” International Telemetering Conference, 01 2010.Seminar IITM SS 21,

Network Architectures and Services, November 2021 4 doi: 10.2313/NET-2022-01-1_01

Challenges with BGPSec

Jan Oesterle, Holger Kinkelin∗, Filip Rezabek∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge25goc@mytum.de, kinkelin@net.in.tum.de, frezabek@net.in.tum.de

Abstract—BGP serves as the standard inter-domain routing
protocol. It exchanges Network Layer Reachability infor-
mation between Autonomous Systems and by this ensures
connectivity across the Internet. At the time BGP was
introduced, there were no security concerns. The inadequate
security led to numerous attacks on the Internet, the paper
covers. The lack of security resulted in multiple different
attempts to fix this issue. One of these attempts is BGPSec.
This paper explains this extension to BGP and discusses the
degree of security it offers. Because additional security comes
with an additional cost, this paper analyzes the deployment
issues that exist. In conclusion, it was found that BGPSec
is a good start as it solves some existing vulnerabilities.
Nevertheless, it is still a work in progress as there are still
vulnerabilities and high deployment costs.

Index Terms—border gateway protocol, bgpsec, resource
public key infrastructure

1. Introduction

The modern Internet consists of multiple smaller net-
works, the so-called Autonomous Systems (AS). AS are
administered by a single organization and are reachable
by an IP prefix. These networks can, for example, be
companies, local internet providers, or universities. To
identify individual Autonomous Systems, each of them
gets assigned a globally unique number. These numbers
are administered by the Internet Assigned Numbers Au-
thority (IANA) and assigned to Regional Internet Reg-
istries (RIR), who assign them further.

Due to this distributed nature of the Internet, there
is a necessity for routers to exchange information about
networks they can reach, allowing them to decide where
to forward received packets. This exchange of information
is called routing. Routing between AS is called external
routing, and BGP is the de-facto standard protocol used
for this. Over time it evolved to its current 4th version as
described in RFC 1105 [1]

While creating a high standard of interconnectivity,
BGP lacks in ensuring security. Over time, this leads to
some devastating effects globally due to either accidental
misconfiguration or malicious intent. Since then, multiple
approaches to add security to the protocol were formu-
lated. BGPSec is one of these approaches and the topic
of this paper.

The rest of the paper is structured as follows. In
Chapter 2, the routing process of BGP is explained.
Chapter 3 analyzes the vulnerabilities of the current state
of BGP. Afterward, Chapter 4 follows an introduction to

BGPSec, focusing on what it tries to achieve. Chapter 5
compares what vulnerabilities BGPSec solves and what
attacks are still possible. In chapter 6, this is accompanied
by a discussion of the deployment hurdles BGPSec has
to overcome to become the new standard. The paper
ends with a conclusion on whether the additional security
justifies the effort that has to be taken to deploy BGPSec
in Chapter 7.

2. The BGP Routing Process

The BGP belongs to the family of path-vector pro-
tocols. In path-vector protocols, the most important ex-
changed routing information is a destination, and path
packets have to traverse to reach this destination. Desti-
nations come as an IP prefix, and paths come in the form
of a list of AS numbers. The exchanged information is
called Network Layer Reachability Information (NLRI).

For two routers to be able to exchange NLRI, they
first have to establish a direct connection. This connec-
tion is built upon a Transmission Control Protocol (TCP)
connection and called BGP peer relationship. To estab-
lish this peer relationship, the two peers exchange OPEN
messages to negotiate parameters of a peer relationship.
Such parameters are, for example, capabilities like the use
of BGPSec or a maximum time interval the connection
will be kept open in case they do not exchange messages.
This time interval is called hold-timer and is used to
evaluate whether a peer relationship is still active. If the
peers do not exchange messages for one full hold-timer,
the connection between the two peers is closed. This
closing leads to them dismissing all routing information
they gained from this connection. To prevent this, peers
regularly exchange KEEPALIVE messages to reset the hold
timer. UPDATE messages carry the actual NRLI. The last
class of messages specified by BGP is NOTIFICATION
messages. Peers use these messages to inform other peers
about possible errors such as malformed packets.

Figure 1 shows an exemplary routing process. AS1
announces in messages 1) and 2) the prefix 192.0.20./24
to both its peers AS2 and AS3. In the red path, after
receiving message 1), AS2 prepends its own AS number
to the path and sends message 3) to AS5 with the updated
path attribute. In the green path, both AS3 and AS4
prepend their AS number, as one can see in messages
4) and 5). This routing example results in AS5 receiving
the two UPDATE messages 3) and 5), announcing the same
prefix. Because the prefix of both of the messages is
identical, AS5 can choose what path to prefer. The router
could base the decision on the length of the path leading

Seminar IITM SS 21,
Network Architectures and Services, November 2021 5 doi: 10.2313/NET-2022-01-1_02

AS1

AS3 AS4

AS5

AS2

1)
192.0.2.0/24
AS Path

AS1

3)
192.0.2.0/24
AS Path:

AS2,AS1

2)
192.0.2.0/24
AS Path

AS1

4)
192.0.2.0/24
AS Path

AS3,AS1

5)
192.0.2.0/24
AS Path
AS4,AS3,AS1

Figure 1: BGP routing process

to AS5 preferring the red path. Another deciding factor
could be the economic relationship of the peers. Consider
the example of AS2 being a provider and AS4 being a
consumer of AS5. AS5 then would have to pay AS2 for
traffic but get paid from AS4 for traffic. This monetary
difference may lead to a preference for the green path
despite it being longer. This decision process is called
policy-based routing and can be configured by the router
administrator.

3. BGP - Security Concerns

BGP version 4 (RFC 4271) [2], addresses connectiv-
ity and scalability demands but makes no considerations
towards security. This lack of security makes it easy for
accidental or malicious misconfiguration that can devas-
tate the Internet as a whole. As BGP uses TCP as the
underlying protocol, TCP’s known weaknesses can serve
as an additional attack vector. Possible attacks on TCP
include attacks such as eavesdropping, insert forged BGP
UPDATE messages, and Denial of Service attacks. [3]

3.1. Prefix Hijacking

Prefix hijacking is a common attack type in BGP. Its
goal is to hijack traffic headed to a specific destination
by announcing a more specific prefix to the destination’s
one. This attack exploits the mechanism of more specific
prefix matching.

More specific prefix matching is a standard in routing
and used to choose a fitting entry in a routing table
in case an IP address matches more than one entry.
Consider the example of a router with two entries 1)
Destination: 123.4.5.0/24 Next Hop: AS3 and 2) Destina-
tion: 123.4.0.0/16 Next Hop: AS5. In the case this router
receives a packet with the destination IP 123.4.5.6, it has
to choose to what AS it forwards the packet to as both
entries fit this IP address. In this case, the router executes
more specific prefix matching by preferring the "longest"
prefix. In this example, the packet would be forwarded to
AS3.

Prefix hijacking makes use of routers’ ability to an-
nounce arbitrary prefixes and more specific prefix match-
ing. This allows a router to hijack traffic bound to a prefix
by announcing a more specific version of it.

Prefix hijacking can be divided into two categories.
1) Black Hole attacks and 2) Interception attacks. The
difference between them both is the way they handle
the hijacked traffic. In Black Hole attacks, the traffic
is attracted and then dropped. Instead of dropping the
packets, Interception attacks forward them to the original
destination creating a Man in the Middle (MitM) attack
enabling the attacker to read and alter packets.

One prominent example of a Black Hole attack is
the Pakistan Youtube hijack. This also serves as a good
example that even accidental misconfiguration can cause
great harm. In 2008, Pakistan made plans to block Youtube
country-wide [4]. The Pakistani government instructed
Pakistan Telekom to realize this block. They attempted
to announce a more specific prefix than the one Youtube
announced. and by this, attracting all the traffic originally
bound to Youtube. A simplified structure of this attack can
be seen in Figure 4.

Pakistani
Telekom

Youtube

Pakistani
Telekom

UPDATE
208.65.153.0/24

UPDATE
208.65.153.0/22

Packet
208.65.153.123

Figure 2: Pakistani Youtube Hijack

Pakistan Telekom announced 208.65.154.0/24. Be-
cause of the global propagation of prefixes and /24 being
more specific than /22, they got preferred by most existing
BPG routers. The green path indicates this. This brought
Youtube eventually down for about two hours. The hijack
was solved by Youtube announcing even more specific
prefixes, effectively hijacking their traffic back.

3.2. Impact on the Internet

As seen in the Youtube hijack incident, a single
announcement can greatly impact the Internet. As the
Internet traffic steadily grows, so does the amount of
sensitive data on the Internet. Recent BGP hijacks show
that primary goals were companies that hold vast user
data, such as Amazon, Facebook, Google, and Banks. [5]
This makes securing BGP a significant concern.

4. BGPSec - an Extension to BGP
Efforts to address BGPs vulnerabilities led to a mul-

titude of different approaches over time. One proposal
was to introduce path validation to the protocol. The
BGP Security Extension in RFC 8205 [6] formulates this
proposal.

4.1. Goals of BGPSec

The introduction of path validation and origin vali-
dation intends to harden BGP to achieve byzantine ro-
bustness. Byzantine robustness is described as in case

Seminar IITM SS 21,
Network Architectures and Services, November 2021 6 doi: 10.2313/NET-2022-01-1_02

of malicious or faulty behavior of hosts, the other hosts
should 1) receive the same message that was sent by the
original host 2) reach a decision on a message’s contents
within a finite time period 3) this decision should be the
same among all these hosts [3].

4.2. Path and Origin Validation

Path validation is a mechanism that allows routers
to validate the path information contained in UPDATE
messages. The validation checks whether the announced
path matches the actual path packets will take. Origin
validation asserts whether the announcing AS owns the
prefix contained in the UPDATE message. For routers to
execute these validations, an additional infrastructure is
needed that holds information about AS numbers and
prefix owners. A possible implementation of such an in-
frastructure is called Ressource Public Key Infrastructure.

4.3. Resource Public Key Infrastructures

The Resource Public Key Infrastructure (RPKI) is used
to issue and distribute certificates that link resources to
resource holders. Such resources can be IP prefixes and
AS numbers. [7]. These certificates are then published
and made available for the public on dedicated repository
servers. These certificates can be queried for matching
AS numbers, IP prefixes, and Subject Key Identifiers
(SKI). These are identifiers used in case an AS number
corresponds to multiple certificates.

4.4. Certificate Issuing Process

The certificate issuing process is hierarchical and in
accordance with the allocation of IP address space. Con-
sider the following example: IANA allocates the address
space 123.0.2.0/24 and the AS number 20 to the Regional
Internet Registry RIPE NICC. RIPE NICC, in turn, allo-
cates the AS number and address space to a university
network.

IANA then would assign a certificate to RIPE NICC
holding the authority to use the AS number 20 and a
certificate holding the authority to announce IP prefixes in
123.0.2.0/24. As these certificates authorize an entity to
announce particular prefixes, they are called Route Origin
Authentication (ROA). RIPE NICC subsequently issues
another set of certificates to the university and publishes
the certificates in a publicly accessible repository server.

4.5. Exemplary BGPSec Routing Process

In BGPSec, the AS PATH attribute gets replaced with
the BGPSec PATH attribute to hold the additional infor-
mation in the form of a signature block. Each signature
in that block corresponds to an AS number in the path.
So the longer the path gets, the more signatures such a
block will contain. The way signatures are created is based
on whether the router announces a prefix or propagates
routing information. A prefix-announcing router create the
signature based on the announced prefix, their own AS
number, and the AS number they forward the UPDATE
message to. On the other hand, a router that propagates

a received UPDATE message uses the previous signature
instead of a prefix to create a new signature. Each of these
signatures is accompanied by a SKI.

Figure 3 shows an exemplary routing process. AS1
announces its prefix 192.0.2.0/24. It begins by prepending
its AS number to the Secure Path and then create a
signature block corresponding to its AS number. When
AS2 receives the UPDATE message sent by AS1, it validates
all signatures in the signature block and then appends its
own AS number to the BGPSec Path and a new signature
to the signature block. After this, it forwards the UPDATE
message to AS3. The router at AS3 then again validates
the information. As now two signatures are contained in
the signature block, the router at AS3 has to validate
two signatures. It begins with the most recent one, in
our example sig2. To validate it, it queries the certificate
that matches SKI2 and AS2. If a matching certificate is
found, they use the public key to validate the signature
cryptographically. If this validation fails or no certificate
was found, the UPDATE message will be deemed invalid.
Then, the router validates the next signature the same way.
After validating the last signature, the router can query the
ROA corresponding to the contained prefix.

Based on the validated signatures, the router can en-
sure that each AS number in the path belongs to the router
that created the signature. Furthermore, the router can
ensure that the next hop in the signature corresponds to
the next AS number in the path. By this, path validation
is achieved. Moreover, by querying the ROA, the router
can ensure that the origin AS is allowed to announce the
prefix. With this, Origin Validation is ensured.

AS1 AS2 AS3

Prefix:
192.0.2.0/24

Path:
AS1

Signatures:
[sig1, SKI1]

Prefix:
192.0.2.0/24

Path:
AS2,AS1

Signatures:
[sig1, SKI1]
[sig2, SKI2]

sig1:
[(prefix, AS1,
AS2)]

sig2:
[(sig1, AS2,
AS3)]

Figure 3: BGPSec Routing Process

5. Analysis of the Effectiveness of BGBPsec

As mentioned above, BGPSec only ensures valid ori-
gins and that paths are genuine. While preventing attacks
to some degree, there are still vulnerabilities that have to
be addressed.

5.1. What It Prevents

BGPSec covers most accidental misconfiguration and
unsophisticated attacks. For example, the Youtube hijack

Seminar IITM SS 21,
Network Architectures and Services, November 2021 7 doi: 10.2313/NET-2022-01-1_02

from chapter 3 would be prevented. The first BGP router
that receives the UPDATE message would try to validate
the signature. This validation attempt would fail because
Pakistani Telekom did not use Youtube’s private key as it
is, at least in theory, not in their possession.

5.2. What It Does Not Prevent

One major issue with BGPSec as it is at the moment
is, that traffic hijacking is still possible. A good example
is the wormhole attack. The basic idea of that attack is
to create a shorter path than the current one and by this
redirecting the traffic. Figure 4 shows such an attack.

AS1

AS2 AS3

Intermediate
AS

AS4

Figure 4: Wormhole Attack

To conduct a wormhole attack, an attacker needs to
control two BGP speakers´. These have to be in a peer
relationship with the endpoints of the traffic the attacker
wants to hijack. In this example, the attacker is in control
of speakers at AS2 and AS4. Before the attack, the traffic
between AS1 and AS4 is forwarded via the green path.
The attacker now creates a tunneled peer relationship
between AS2 and AS3 indicated by the red dashed line.
This creates a path of length three between AS1 and AS4.
In about 86 percent of cases [8], path lengths are longer
than 3. This leads to the red path being preferred due to
shorter path length and leads to a MitM attack. Because
the attacker does not announce a prefix and does not forge
the BGPSec PATH attribute, this attack is not covered by
BGPSec.

6. Discussion of Deployment Issues

Additional security comes with an additional cost in
terms of storage and processing power requirements. This
cost and the still obvious flaws BGPSec has played a
major role in the hurdles it has to overcome in terms of
deployment.

6.1. A Technical View

The introduction of signatures and certificates to the
routing process is crucial for the additional security BG-
PSec offers. Each time a BGP router receives an UPDATE
message, it validates all signatures. Additionally, each
time a router propagates an UPDATE message, it has to
create a signature and append it to the signature block in
the BGPSec Path. This leads to an increasing number of

validations the more extended the path gets, and makes
it on average 70 times slower than regular BGP [8]. The
number of required UPDATE message itself also increases.
This is because BGPSec Path attributes can only contain
one single prefix while regular AS PATH attributes can
contain multiple ones [6]

This serves as a significant hurdle because, according
to RFC 7747 [7], convergence is a major factor in the re-
liability of BGP. Convergence means that all routers have
the same information about the network topology. Due to
the continuous change of this topology, the propagation
of this change should happen fast. Because of BGPSec’s
longer processing time, convergence is slower than the
convergence without it.

The upside of BGPSec is that as an extension, it
can work in parallel with regular BGP. As stated in the
RFC, the BGPSec Path attribute is an optional attribute
that replaces the AS path attribute. The decision of what
attribute to use is negotiated between peers using the
OPEN messages. In the case that a BGP speaker wants
to propagate a prefix is received from a peer connected
using BGPSec, the BGPSec path attribute will get stripped
of its additional information and then propagated as AS
path to the peers that do not use BGPSec. This allows for
a gradual deployment because BGP and BGPSec routers
can coexist, and communication between them does not
affect the routing process. in the scope of insecure routing.

6.2. A Management View

As stated in RFC 4271 [2], the management of certifi-
cates and origin/prefix pairs are handled by two distinct
RPKIs. Because BGP is not under a single authority,
collecting complete data sets and keeping them up to date
is a significant deployment hurdle BGPSec still has to
face. At the moment, there is already an RPKI in place for
origin authentication. According to a report on RPKI [9],
about 27 percent of prefix announcements are valid, 0.5
invalids, and 72,4 unknown, meaning that the RPKI has no
information about the pairing of prefixes to AS numbers.
This shows that there were some efforts to implement
it, but wide-scale deployment has yet to be achieved.
Additionally, there is no incentive to provide such data
for a single ISP because they get no direct value out of
this. An approach to change this may be the deployment
beginning with more prominent parts of the Internet and
discrimination of the ones that did not implement it by
preferring connections through paths using BGPSec.

7. Conclusion

This paper presented BGP as the de-facto standard
routing process to exchange routing information between
AS. As BGP has no built-in security, it is vulnerable to
attacks such as the famous Pakistan Youtube incident.
BGPSec is a proposed extension to BGP that adds path
and origin validation to the routing process by using
RPKI. However, although it prevents some attacks and
misconfiguration from happening, there are still significant
flaws that allow for attacks like wormhole attacks. These
vulnerabilities show the state of the protocol as a work in
progress. Contributing to that are the still prevalent issues
it faces in terms of deployment.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 8 doi: 10.2313/NET-2022-01-1_02

The additional security BGPSec offers comes with a
price. The creation of signatures and the validation process
takes more time and needs additional space. Furthermore,
it is hard to collect and manage the necessary data, as
there is no single authority that manages AS numbers and
prefixes. With BGP being an old protocol, these problems
follow the problems other protocols of that era face, like
DNS. With approaches to improve BGPSec existing but
not yet included in the current RFC, more research is still
necessary to find a fitting solution to the current problems
BGP is facing.

References

[1] K. Lougheed and J. Rekhter, “Border gateway protocol (bgp),”
Internet Requests for Comments, RFC Editor, RFC 1105, June
1989, http://www.rfc-editor.org/rfc/rfc1105.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1105.txt

[2] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol
4 (BGP-4),” Internet Requests for Comments, RFC Editor, RFC
4271, January 2006. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc4271.txt

[3] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A survey of
bgp security issues and solutions,” Proceedings of the IEEE, vol. 98,
no. 1, pp. 100–122, 2010.

[4] (2008) Youtube hijacking: A ripe ncc ris case
study. [Online]. Available: https://www.ripe.net/publications/news/
industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

[5] J. Sherman. (2020) The politics of internet security: Private
industry and the future of the web. [Online]. Available:
https://www.atlanticcouncil.org/in-depth-research-reports/report/
the-politics-of-internet-security-private-industry-and-the-future-of-the-web/

[6] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,”
Internet Requests for Comments, RFC Editor, RFC 8205, September
2017. [Online]. Available: http://www.rfc-editor.org/rfc/rfc8205.txt

[7] M. Lepinski and S. Kent, “An infrastructure to support secure
internet routing,” Internet Requests for Comments, RFC Editor,
RFC 6480, February 2012, http://www.rfc-editor.org/rfc/rfc6480.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6480.txt

[8] K. Kim and Y. Kim, “Comparative analysis on the signature algo-
rithms to validate as paths in bgpsec,” in 2015 IEEE/ACIS 14th
International Conference on Computer and Information Science
(ICIS), 2015, pp. 53–58.

[9] (2020) Global prefix/origin validation using rpki. [Online].
Available: https://rpki-monitor.antd.nist.gov/

Seminar IITM SS 21,
Network Architectures and Services, November 2021 9 doi: 10.2313/NET-2022-01-1_02

Seminar IITM SS 21,
Network Architectures and Services, November 2021 10

IEEE 802.1Qcr Asynchronous Traffic Shaping with Linux Traffic Control

Christopher Pfefferle, Florian Wiedner∗, Christoph Schwarzenberg∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga38pav@mytum.de, wiedner@net.in.tum.de, schwarzenberg@net.in.tum.de

Abstract—The widespread TSN standards, as introduced
by the IEEE 802.1 working group, provide low latency
scheduling and shaping with guaranteed packet transfers.
Until recently, they depend on a synchronized clock between
all network nodes. The newly introduced ATS standard
however revokes this dependency for software with real-time
requirements and can introduce TSN to a wider community.
This paper describes the requirements to implement the ATS
standard using the Linux TC tool for traffic shaping and
scheduling. While it is currently impossible to implement
LRQ queues or the Paternoster scheduler with TC com-
mands, a model of the UBS algorithm with TBE queues will
be presented.

Index Terms—asynchronous traffic shaping, time sensitive
network, traffic control, traffic scheduling

1. Introduction

Network standards take ever-growing steps to revo-
lutionize our daily lives. Presentations are held online
with participants scattered all around the globe and even
presentation systems in offices send slides from the pre-
senter over the local area network to the monitor. In those
scenarios a slight delay will not irritate the speaker, but
when dealing with precision machinery a delay of only
milliseconds can break fragile components. For these use
cases the IEEE 802.1 working group creates standards
for Time-Sensitive Networking (TSN) to provide commu-
nication protocols and features that can deliver precise
communication.

A major contribution was the introduction of syn-
chronization between participating devices in a network,
introduced by the IEEE 802.1BA Audio Video Bridg-
ing (AVB) standard, allowing precise traffic scheduling
and guaranteed packet deliveries [1]. However, the time
synchronization mechanism adds high complexity to net-
work setup and maintenance. The IEEE 802.1Qcr Asyn-
chronous Traffic Shaping (ATS) standard intends to bypass
the complexity of synchronization by revoking it and
allowing every network node to send traffic on its own
timing [2]. Nevertheless, it still aims to achieve determin-
istic and low transmission delays.

In order to shape and schedule traffic on Linux ma-
chines a program is required to intervene in the path of
packets from creation to the network interface. One such
tool is traffic control (TC), it comes pre-installed on Linux
distributions and provides powerful possibilities to control
the network traffic of a computer [3]. With ATS relaxing
the requirements for TSN and TC moreover providing the

necessary tools, daily used software is able to establish
real-time requirements and further facilitate in the ever-
growing impact of the internet.

This paper gives an overview over ATS and Linux
TC, presents a possible model to implement a part of
the standard with the tool and points out its current
limitations. It is structured as follows: Section 2 will give
a short history of related work while Section 3 describes
implementation details of ATS and a selective overview
over the possibilities of TC. In Section 4 the details of
how TC can be utilized to implement the requirements of
ATS will be shown, and Section 5 will conclude this work
and suggest next steps.

2. Related work

The first part of this Section will provide a brief
overview over the development of TSN and the back-
ground of the ATS standard and its latest developments.
The second part will introduce the Linux TC command
and its contributions in networking on Linux machines,
as well as its relevance.

2.1. Asynchronous Traffic Shaping

Asynchrony in network traffic has been established as
the standard in shared networks for a long time and is the
backbone of the Internet connecting millions of nodes.
Rigolio et al. proposed shaping on the Asynchronous
Transfer Mode (ATM) as early as 1991, offering control
over the bandwidth and flow exiting a given system [4].

In 2011 the IEEE 802.1BA standard for AVB was
approved, proposing the features for TSN that are still
relevant today [1]. It introduced time synchronization
between network devices and traffic shaping, to minimize
delay and jitter for distributed systems with real-time
constraints.

Ahead of the introduction as an IEEE standard, in
2016 Specht and Samii introduced the Urgency-Based
Scheduler (UBS) in [5] with two proposed algorithms:
Length-Rate Quotient (LRQ) and Token Bucket Emulation
(TBE). They are both based on Rate-Controlled Service
Disciplines (RCSDs) and therefore can provide guaran-
tees on both deterministic and statistical performance by
separating the scheduling and shaping components [6].

One year later UBS and the then newly introduced
Paternoster scheduler, which is based on Cyclic Queuing
and Forwarding (CQF) [7], were approved as an official
standard by the IEEE TSN working group within the

Seminar IITM SS 21,
Network Architectures and Services, November 2021 11 doi: 10.2313/NET-2022-01-1_03

IEEE P802.1Qcr ATS amendment. Zhou et al. have com-
piled a detailed insight into ATS together with a perfor-
mance evaluation in various simulated environments [8].

Because of its recent publication there are not many
works incorporating it yet; performance evaluations are
given by Specht and Samii in [9] and by Zhou et al.
in [10], and Mohammadpour et al. provides computed
worst-case bounds for latency and backlog in [11]. Le
Boudec analyzes a more generalized approach of UBS
in [12] and Grigorjew et al. propose an addition to increase
jitter control in [13]. Also new introduced standards take
ATS into account, the IEEE P802.1Qdd Resource Alloca-
tion Protocol standard incorporates support for ATS [14].

The most recent performance assessment of ATS was
released by Fang et al. in November 2020, taking various
released standards of the TSN working group into account,
revealing performance advantages of ATS especially in
heavy-load cases [15].

2.2. Linux traffic control

The Linux TC tool was introduced in 2001 with the
Linux kernel version 2.2, within the iproute2 package. An
influential work is done by Hubert, combining definitions
and application examples in a well-arranged document
and continuing updated support on his online HOWTO
document [16].

TC is a powerful tool for distributing and shaping
network traffic, allowing the user to define detailed rules.
It is used to rule over multiple services communicating
through a network with restricted capabilities, examples
like the work done by Vila-Carbo et al. in [17] show
that its qualities are capable to define rules for real-time
transmissions.

The introduction of an implementation of the Credit-
Based Shaper (CBS) for TC [18], as defined by the
IEEE 802.1Q-2014 standard, further shows the potential
of TC for TSN applications and is used to implement
synchronous traffic shaping on computers using Linux-
based operating systems.

3. Architecture Details

Here, a short selective overview over the architecture
of the ATS standard and Linux TC will be given. Particu-
larly the later is a powerful tool to work with and has an
accordingly large documentation. The focus will therefore
lay on a subset of the traffic shaping capabilities needed
to compare the possibilities of TC with the requirements
of ATS in Section 4.

3.1. ATS algorithms

This Section is mainly based on [8]. The idea behind
ATS is the independent clock of every connected device
in a network, discarding the problems that arise when
distributed devices have to agree on a synchronized timer.
Its main requirement are queues that support asynchrony.
A shaper is bond to each which assigns eligibility times
to the frames in the queue, and on this information a
transmission selection algorithm decides when frames are
transmitted. This algorithm can be described as a simple

gate control, taking the eligibility times into consideration.
These initial shaped queues are simple FIFO queues and
they ensure the processing of high-priority flows is not
affected by malicious or other interfering flows.

The shaped queues need to follow the queue allocation
rules, direct quoted from [8]:

QAR1:
frames from different transmitters are not al-
lowed to be stored in the same shaped queue.

QAR2:
frames from the same transmitter but not be-
long to the same priority in the transmitter are
not allowed to be stored in the same shaped
queue.

QAR3:
frames from the same transmitter with the
same priority in the transmitter, but not be-
long to the same priority in the receiver are
not allowed to be stored in the same shaped
queue.

After shaping the eligible frames, they are sent from
the shaped queues and stored in shared queues. These are
managed by one of the shapers described below which se-
lects and forwards them to the network interface releasing
them into the network.

The ATS standard proposes two scheduling algo-
rithms which can be used to realize asynchronous shaping
queues, the foremost introduced UBS algorithm and the
Paternoster algorithm.

The UBS scheme allows two types of shaped queues to
be used: LRQ and TBE, respectively based on the frame-
by-frame leaky bucket algorithm and token-based leaky
bucket algorithm [6].

LRQ disregards the incoming flow pattern and shapes
with a stabilized transmitting/leaking rate, by calculating
the eligibility time of a packet as "the quotient between the
size of the previously transmitted frame and the reserved
link rate of the particular class" [8].

TBE allows some level of bursty traffic transmitting
while maintaining an average rate, it uses the accumu-
lation time of "tokens" in a "bucket" to calculate the
eligibility time of a packet. In comparison to LRQ, it
provides a better utilization of the given bandwidth on
a lighter load.

The scheduling is achieved using the ATS algorithm
based on a Leaky Bucket approach. Frames are processed
with respect to their eligibility times, their arrival time, the
size of the last frame, and the current system clock allow-
ing to drop overdue frames. Therefore, the ATS scheduler
acts as the final shaper for the available bandwidths.

The Paternoster queuing and scheduling algorithm is
a cyclic approach. It utilizes four queues, which in every
epoch pass through one of the four states prior, current,
next and last as depicted in Table 1. In each epoch, frames
are enqueued into the current queue, if it is full they are
passed through to the next or last queue or get dropped,
and are only dequeued from the current queue. The epoch
length will influence the delay and has to stay consistent
within the network. [8]

Seminar IITM SS 21,
Network Architectures and Services, November 2021 12 doi: 10.2313/NET-2022-01-1_03

TABLE 1: Queuing in Paternoster, adapted from [8]

Queue Queue0 Queue1 Queue2 Queue3
Epoch
Epoch 0 prior current next last
Epoch 1 last prior current next
Epoch 2 next last prior current
Epoch 3 current next last prior
. . .

3.2. TC for traffic shaping

This Section is largely based on the information com-
piled by [16]. Every network packet, which can either be
produced by a local program or is being forwarded, has
to pass through the TC architecture.

The main components are Queuing Disciplines
(qdiscs), i.e., specified queuing algorithms. They can be
either classless or classful, the later supporting an inter-
nal division into classes that again contain configurable
qdiscs. Hence, they are arranged in a tree structure, with
the Linux kernel interacting (enqueuing and dequeuing
of network packets) with the root node only. A qdisc
can perform three actions on packets queued into it:
(1) scheduling, i.e., prioritization of packets over others,
(2) shaping, i.e., delaying or even dropping packets to
satisfy maximum traffic rate requirements, and (3) polic-
ing (if used on incoming traffic), i.e., dropping packets to
satisfy internal requirements on incoming traffic.

If a qdisc may delay packets for the purpose of main-
taining a constant transmission rate it is considered to
be non-work-conserving. If it, on the other hand, sends
out packets as soon as they are available, it is considered
work-conserving.

Finally, a filter can be assigned to each class, it holds
conditions with which packets can be classified. If a filter
matches a packet, it will be forwarded to the qdisc of the
respective class. In the following the qdiscs addressed in
this paper are explained:

pfifo_fast
The default qdisc, a classless shaper with
three FIFO queues, one for each priority level
as defined by the Type of Service (TOS)
flag of network packets. Packets are dequeued
starting from the highest priority queue.

Token Bucket Filter (TBF)
A classless shaper that supports a set maxi-
mum rate with short bursts.

Stochastic Fairness Queuing (SFQ)
A classless scheduler that dequeues packets
in a round-robin fashion through flows, which
mostly correspond to a TCP/IP connection.

PRIO
A classful scheduler similar to pfifo_fast, but
it supports enqueuing with filters and sub-
classes other than simple FIFO queues. De-
queuing is done the same way, starting at the
defined first qdisc.

Hierarchical Token Bucket (HTB)
A classful shaper that allows to precisely limit
the bandwidth of its child qdiscs with a pos-
sibility to borrow unused resources.

Clark-Shenker-Zhang algorithm (CSZ)
A complicated classful scheduler proposed
by the three eponymous researchers in [19],
providing guaranteed service for real-time ap-
plications along with best-effort queues, re-
ducing delay and jitter by deliberately not
shaping.

Credit-Based Shaper (CBS)
A classless shaper that implements the CBS
algorithm as introduced in the IEEE 802.1Qav
standard, relying on set bandwidths.

Earliest TxTime First (ETF)
A classless shaper that is constructed to sup-
port shaping in TSN, dequeuing packages on
a configurable timer.

4. Implementation of ATS with TC

With the requirements and available tools introduced,
a possible implementation of the ATS standard with the
UBS scheme and TBE queues is presented. Section 4.2
will then explain the problems encountered when trying
to implement LRQ queues or the Paternoster scheme.
Both Subsections refer to details of the ATS algorithm
as requirements and the functionalities of TC as capabil-
ities to implement the former. For detailed descriptions
and definitions refer to Section 3 and the corresponding
Subsections.

4.1. A TC model of UBS/TBE

The root qdisc of the TC scheme does not necessarily
need any shaping capabilities, shaping will be achieved
by further qdiscs. But to contain further classes it needs
to be classful. Its purpose is the separation of packets
into queues with regards to their priorities, so packets
with the same priority are handled by the same queue.
This enforces the separation of the different priorities as
required by QAR2. As the distribution of packets into
classes can be controlled by filters, the focus lies on the
correct dequeue strategy. The root qdisc must abide to the
ATS scheduling algorithm. Potential candidates as root
nodes include a PRIO qdisc that achieves a strict prioriti-
zation, the CSZ algorithm that provides guaranteed service
for high-prioritization packets while possibly neglecting
lower-prioritization ones, and HTB which is a generally
good competitor that provides no strict prioritization and
acts as a shaper, which may introduce delay and jitter.
The ATS algorithm on one hand performs shaping, which
would render the HTB as the best option, but on the other
hand it also performs strict prioritization which would
require a PRIO qdisc. As a solution, both will be used
to account for the requirements of the ATS algorithm.

Each class assigned to a priority level has to imple-
ment the requirements of the TBE queue. A viable option
is the TBF shaper applying nearly the same token/bucket
technique, but as it is a classless qdisc its application at
this point would violate QAR1.

The only qdisc realizing both QAR1 and QAR3 is
the classless SFQ scheduler which permits to split the
packages by conversations. As it does not support shaping,
a separate shaper is needed.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 13 doi: 10.2313/NET-2022-01-1_03

+----------------+
| root qdisc HTB |
+----------------+

|
+---------+
| class 1 |
+---------+

|
+------------+
| qdisc PRIO |
+------------+

/ | \
+-------------+ +-------------+ +-------------+
| class prio1 | | class prio2 | | class prio3 |
+-------------+ +-------------+ +-------------+

| | |
+-----------+ +-----------+ +-----------+
| qdisc SFQ | | qdisc SFQ | | qdisc SFQ |
+-----------+ +-----------+ +-----------+

Figure 1: Proposed TC scheme for ATS

The solution that is presented in this paper is the usage
of a HTB root node with only one subclass, a PRIO qdisc.
With this setup, as shown by Figure 1, a SFQ qdisc can
be inserted per priority level to ensure all three queue
allocation rules are met.

4.2. Limitations

LRQ queues cannot be realized with the qdiscs pro-
vided by TC, because it heavily relies on the calculation of
eligibility times and their propagation through the scheme.
ETF is currently the only qdisc to allow the calculation
of eligibility times. Because it is classless, it lacks the
requirements to be used as a root node by itself, and as
the calculated times cannot be used in further schedulers a
new qdisc would be required to account for the scheduling
done by the ATS algorithm considering the timer of ETF.

Similarly, Paternoster is not realizable with the avail-
able tools. It requires en- and dequeuing into and from
different queues depending on the current epoch, which
can neither be accomplished with the current qdiscs nor
with filters.

5. Conclusion and future work

The IEEE 802.1Qcr ATS standard was introduced to
increase the real time capabilities of networks that have
no synchronized timer available for every node, reducing
the requirements while still providing guarantees for time
sensitive applications. Using the TC tool this paper shows
a possible model to realize this standard, in particular the
UBS scheme with TBE queues, on Linux machines. Using
only the HTB, PRIO, and SFQ qdiscs it is possible to
comply to the conditions of ATS.

It further highlights the problems that arise when
working on the other possible schemes of the standard,
namely UBS with LRQ queues and the Paternoster queu-
ing/scheduling algorithm. With most of the requirements
met, TC currently lacks key features like the usage of
eligibility times or dynamically changing the roles of
queues. However, it seems possible to add these features
in future updates.

The next step would be an implementation of the
proposed scheme to analyze its practicability and perfor-
mance. Even though TSN standards are only applied in a
specialized field, if this approach turns out feasible it may
allow more general applications in Smart Homes or the
Internet of Things.

References

[1] “IEEE 802.1BA-2011 - IEEE Standard for Local and Metropolitan
Area Networks--Audio Video Bridging (AVB) Systems,” https:
//standards.ieee.org/standard/802_1BA-2011.html, 2011, [Online;
accessed 25-March-2021].

[2] “P802.1Qcr – Bridges and Bridged Networks Amendment: Asyn-
chronous Traffic Shaping,” https://1.ieee802.org/tsn/802-1qcr/,
2018, [Online; accessed 20-March-2021].

[3] B. Hubert, “iproute2 - TC (8),” Linux man page (8), 2001.

[4] G. Rigolio, L. Verri, and L. Fratta, “Source Control and Shaping in
ATM Networks,” in IEEE Global Telecommunications Conference
GLOBECOM ’91: Countdown to the New Millennium. Conference
Record, vol. 1, 1991, pp. 276–280.

[5] J. Specht and S. Samii, “Urgency-Based Scheduler for Time-
Sensitive Switched Ethernet Networks,” in 2016 28th Euromicro
Conference on Real-Time Systems (ECRTS), 2016, pp. 75–85.

[6] H. Zhang and D. Ferrari, “Rate-Controlled Service Disciplines,”
Journal of High Speed Networks, vol. 3, no. 4, pp. 389–412, 1994.

[7] “P802.1Qch – Cyclic Queuing and Forwarding,” https://1.ieee802.
org/tsn/802-1qch/, 2016, [Online; accessed 25-March-2021].

[8] Z. Zhou, M. S. Berger, S. R. Ruepp, and Y. Yan, “Insight into
the IEEE 802.1 Qcr Asynchronous Traffic Shaping in Time Sensi-
tive Network,” Advances in Science, Technology and Engineering
Systems Journal, vol. 4, no. 1, pp. 292–301, 2019.

[9] J. Specht and S. Samii, “Synthesis of Queue and Priority Assign-
ment for Asynchronous Traffic Shaping in Switched Ethernet,” in
2017 IEEE Real-Time Systems Symposium (RTSS), 2017, pp. 178–
187.

[10] Z. Zhou, Y. Yan, M. Berger, and S. Ruepp, “Analysis and Modeling
of Asynchronous Traffic Shaping in Time Sensitive Networks,” in
2018 14th IEEE International Workshop on Factory Communica-
tion Systems (WFCS), 2018, pp. 1–4.

[11] E. Mohammadpour, E. Stai, M. Mohiuddin, and J.-Y. Le Boudec,
“Latency and Backlog Bounds in Time-Sensitive Networking with
Credit Based Shapers and Asynchronous Traffic Shaping,” in 2018
30th International Teletraffic Congress (ITC 30), vol. 02, 2018, pp.
1–6.

[12] J.-Y. Le Boudec, “A Theory of Traffic Regulators for Deterministic
Networks with Application to Interleaved Regulators,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2721–2733, 2018.

[13] A. Grigorjew, F. Metzger, T. Hossfeld, J. Specht, F.-J. Götz,
F. Chen, and J. Schmitt, “Asynchronous Traffic Shaping with Jitter
Control,” 2020.

[14] “P802.1Qdd – Resource Allocation Protocol,” https://1.ieee802.
org/tsn/802-1qdd/, 2018, [Online; accessed 20-March-2021].

[15] B. Fang, Q. Li, Z. Gong, and H. Xiong, “Simulative Assessments of
Credit-Based Shaping and Asynchronous Traffic Shaping in Time-
Sensitive Networking,” in 2020 12th International Conference on
Advanced Infocomm Technology (ICAIT), 2020, pp. 111–118.

[16] B. Hubert, “Linux Advanced Routing & Traffic Control,” in Pro-
ceedings of the Ottawa Linux Symposium, 2002, pp. 213–222.

[17] J. Vila-Carbo, J. Tur-Masanet, and E. Hernandez-Orallo, “An Eval-
uation of Switched Ethernet and Linux Traffic Control for Real-
Time Transmission,” in 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, 2008, pp. 400–
407.

[18] V. C. Gomes, “tc-cbs (8),” Linux man page (8), 2017.

[19] D. D. Clark, S. Shenker, and L. Zhang, “Supporting Real-Time Ap-
plications in an Integrated Services Packet Network: Architecture
and Mechanism,” ser. SIGCOMM ’92. Association for Computing
Machinery, 1992, pp. 14–26.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 14 doi: 10.2313/NET-2022-01-1_03

Certificate Revocation

Raphael Schmid, Juliane Aulbach∗, Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: raphael.schmid@tum.de aulbach@net.in.tum.de, sattler@net.in.tum.de

Abstract—
This paper explains the concept of certificate revocation

and how it is implemented and enforced in the real world.
It explains why certificate revocation is necessary and how
there is no agreed-on standard to execute it. It will introduce
the actors in certificate revocation and how they fulfill their
role in ensuring user security. Then the paper will explain
various approaches to optimize certificate revocation and
compare them to conclude which one is the most suitable
for usage.

Index Terms—certificate revocation, internet security, revo-
cation methods

1. Introduction

In the TLS protocol, having the ability to revoke
certificates when they become invalid before their validity
period ends is crucial. However, there is no agreed-upon
standard in the industry as to how to handle revocation.
It results in most browser clients not adequately checking
for revocation when connecting with a server. It can allow
attacks like "man-in-the-middle attacks". This paper intro-
duces the necessary background information to understand
certificate revocation in chapter 2. Then it explains how
certificate revocation works and its most used methods
in chapter 3. In chapter 4, the behavior of browsers is
explored and what their different shortcomings are when
it comes to certificate revocation. Then in Chapter 5,
it discusses which problems can arise from the server,
which must request a certificate revocation if a certificate
gets compromised. Chapter 6 explores which different
classifications there are for handling certificate revocation
and then introduces some of the most recent approaches,
concluding with a comparison of said approaches. Chapter
7 then evaluates the findings of the previous chapters and
Chapter 8 finishes with a conclusion of the paper.

2. Background

The secure exchange of data on the internet is a
big concern for many people nowadays. A widely used
standard to ensure this security is the TLS protocol. TLS
stands for Transport Layer Security. It utilizes a twofold
system. One part of this system is encryption to ensure
confidentiality and integrity of the data. The other part
is to verify the identity of a remote party using digital
certificates. [1], [2]
These digital certificates will be the main focus of this

paper. Here is a real-world example of how they work.
Say a client, e.g. a web browser, wants to connect to
a server. To verify its identity to the client, the server
sends a digital certificate to the client, which is specifically
issued for the domain of the server. This digital certificate
identifies the server to the client. But with just that, neither
the validity of the server nor the certificate is guaranteed.
This is attained using a so-called chain of trust. [1], [2]
The chain starts with a certificate authority (CA) which
presents a root certificate. A CA can issue a certificate
for any domain. The issued certificate gets signed by the
CA ensuring that the certificate can always be traced back
to the CA. If this certificate now can also issue and sign
certificates itself, it is called an intermediate certificate.
A certificate that is not able to sign another certificate is
called a leaf certificate. Leaf certificates are used by most
websites. Root certificates are assumed to be trusted by the
client. When a client now wants to verify a certificate it
has to follow this chain, starting with the root certificate,
traversing zero or more intermediate certificates until it
reaches the leaf certificate. The client has to verify every
signature of every certificate it traverses. [1], [2] This
mechanism is visualized in figure 1 below.

Figure 1: Chain Of Trust

3. Certificate Revocation

Certificates are not valid indefinitely. Every certificate
has a validity period [1]. But, there can be occasions where
the certificate is not valid anymore before the said validity
period is over. Examples for this could be that the private
key of a certificate became compromised, was generated
with a weak algorithm, or the erroneous issuance of a
certificate. [3] If that happens, the certificate must get
revoked, advertising to entities checking the certificate that
it is no longer valid [1]. Revoking a certificate, in this
case, is important. If a certificate got compromised but
not revoked, it could open some serious vulnerabilities.
For example, an attacker impersonating the identity of
the webserver or eavesdropping on private communica-
tion. [2]

There are three key actors in certificate revocation:

Seminar IITM SS 21,
Network Architectures and Services, November 2021 15 doi: 10.2313/NET-2022-01-1_04

• Web server / Server administrator [1], [2]
• Certificate authority (CA) [1], [2]
• Client (e.g. web browser) [1], [2]

Here is how a certificate revocation would play out
in real life: When a certificate needs to get revoked,
first, it is the responsibility of the web administrator to
send a revocation request to the CA which signed the
certificate. The CA then must sign a statement that the
certificate got revoked and is responsible for disseminating
this information on the internet. [1], [2] A client that wants
to connect to the server managed by the web administrator
then is responsible for checking the status of a certificate
used by a server to establish a secure connection. There
are two methods most often used by CAs to dissemi-
nate revocation statuses of certificates online. CRLs and
OCSP. [1]

3.1. CRL

A Certificate Revocation List (CRL) is a file that
contains a list of all revoked certificates of a CA. Every
CRL has an expiration date and must get updated and
published periodically by the CA. To check if a certificate
got revoked, the client must download the CRL from
the CA and then check for the certificate inside the
downloaded CRL. The client can cache the CRL until its
validity expires. But still, making the client download a
whole list of revoked certificates imposes a burden on the
client and can add to latency when loading a web page.
It is especially true for bigger CRLs. Apple, for example,
had a CRL with 2.6 million revoked certificates which had
76 MB in size. [1]

3.2. OCSP

OCSP, Online Certificate Status Protocol, aims to
address this problem of high overhead. It reduces the
overhead compared to the CRLs by making the client
query for the revocation status of just a single certificate.
Using OCSP, the client generates an HTTP request to
check the serial number of a certificate. The CA then
sends the information to the client with a signed response.
But this approach introduces a new problem. It contains a
privacy issue, exposing the client’s browsing behavior to
the CA. Also, it still puts some burden on the client and
adds to latency. [1]

4. Browsers

In a real-world scenario, the client connecting to a
server is typically a browser. This section will explain
the behavior and shortcomings of browsers in certificate
revocation.
Browsers behave differently on varying devices. There is
no mobile browser that checks for certificate revocation.
The reason for this lack of security is to decrease the cost,
regarding latency and power, for the mobile devices. [1]
But, like already discussed, not checking for the revoca-
tion status of certificates opens up some serious security
vulnerabilities, which is alarming considering that 55.56%
of web traffic is generated by mobile phones [4].
When observing the behavior of desktop browsers, there

is no common behavior as to how to handle certificate re-
vocation. No browser acts the same. It is also worth noting
that even for the same browser, the behavior can change
depending on the platform and the type of certificate.
Since it is exceeding the scope of this paper to consider all
these different factors, this paper will only look at Google
Chrome and Mozilla Firefox as examples of shortcomings
of browsers handling certificate revocation. Also, only the
behavior on Microsoft Windows will be covered, since it
is the most used operating system. [5] ([1] takes an in-
depth analysis on this matter.)
Google Chrome does not check CRLs for certificate
information. Chrome uses a customized CRL to look up
revocations called the CRLSet. The CRLSet is a 250 kB
big, pre-populated list of certificates that get put together
by Google by crawling a pre-set list of CRLs. It is not
clear what Google’s criteria are for these CRLs. This list
of CRLs is already just a small subset of the CRLs existing
on the internet but Google then also applies a list of rules
to drop more revocation data. Which results in Google
covering only 75.6% of the revoked certificates that they
consider. All of this leads to Google covering only 0.35%
of all revoked certificates online in their CRLSet. [1] [2]
Mozilla Firefox uses NSS for certificate verification.
"Network Security Services (NSS) is a set of libraries de-
signed to support cross-platform development of security-
enabled client and server applications." [6] Firefox dis-
abled CRL checking and only uses OCSP requests. Ex-
tended Validation (EV) certificates are special certificates
containing additional information offering a more care-
ful verification. Firefox differentiates between EV and
non-EV certificates, checking only the leaf-certificates
for non-EV certificates. This is a behavior displayed by
many browsers. [1] Like Googles’ CRLSet, Firefox uses
OneCRL, a list of pre-stored certificates [7], [8].

5. Servers

Server administrators are responsible for issuing revo-
cation requests to their respective CA. A human compo-
nent in the process of certificate revocation opens some se-
curity vulnerabilities. This showed in the aftermath of the
Heartbleed event in 2014, a "vulnerability in OpenSSL’s
implementation of the Heartbeat Extension" which caused
a mass revocation of digital certificates. [9] It exposed that
even after 3 weeks 10% of vulnerable websites still had
not addressed the issue. And also showed the number of
revocations went down on the weekend, probably because
there was no server administrator monitoring the security
of the server during that time. And finally, of the certifi-
cates that were reissued because of Heartbleed 4.1% of
certificates were reissued with the same private key. [9]
This raises the question of whether an important task like
revoking certificates, should be done manually and be
prone to human error.

6. Methods of revocation validation

There are three different types of approaches to revo-
cation validation.
When utilizing a pull-based approach, the client requests
the revocation status of a certificate when needed [10].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 16 doi: 10.2313/NET-2022-01-1_04

CRLs and OCSP classify as pull-based approaches.
Second is the push-based approach, where the client peri-
odically downloads revocation information. This approach
does not reveal the client’s traffic patterns, while most of
the pull-based approaches do. [8]
Last is the network-assisted approach. The idea is to
change the ecosystem of TLS in a way that makes it
unnecessary for the client to request the revocation status
of a certificate. [1], [8], [10]

6.1. CRLite

CRLite is a push-based approach. The idea is to
push all certificate revocations to the browser periodically
utilizing a two-part system. [11] The first part happens
on a server, where all known TLS certificates are getting
crawled on the web. All of the revoked certificates get
hashed into a bit-vector. If the bit assigned to a certificate
is 1, the certificate got revoked. To avoid the risk of
false positives, confusing a non-revoked certificate with
a revoked one, this mechanism gets repeated with a set
of all revoked certificates and all non-revoked certificates
until no false positives are left. The filter used is called
a bloom filter and this technique of cascading down
many filters to eliminate false positives is a bloom filter
cascade. Avoiding false positives is crucial to allow the
client to hard-fail. [11] The second part is on the client-
side, downloading the filters and using them to check
for the revocation of observed certificates. [11] CRLite
aims to maximize the efficiency of checking for revoked
certificates. Only 10 MB are needed for roughly 30 million
certificates. Once downloaded they can be updated on a
daily basis averaging about 580 kB. CRLite can be de-
ployed by simply installing a plug-in on the browser. [11]
However, when CRLite was proposed the bloom filter
cascade was only 10 MB. But already a year after the
proposal the filter used up 18.1 MB of space [10]. This
is because between January 2017 and January 2020 the
number of live certificates went up from 30 million to
over 434 million. This is because of services like Let’s
Encrypt which enables automatic issuing for certificates,
as well as efforts to normalize using only encrypted web
traffic. [8]

6.2. Let’s Revoke

Let’s Revoke is an approach based on CRLite. But
compared to CRLite, Let’s Revoke needs 28% of network
bandwidth. It utilizes a push-based model with a focus on
minimizing network bandwidth consumption while main-
taining a global revocation coverage. [8] To achieve this
Let’s Revoke invented a method using so-called Certificate
Revocation Vectors (CRV), Revocation Numbers (RN),
and Revocation IDs (RID). CRVs are dynamically-sized
bit vectors. Each bit in the vector represents the revocation
status of one specific certificate. The bits in the vector are
mapped to their respective certificates with the RN. To
limit the size of the vectors and ease the use, they are
separated by date of expiration. RIDs are then used to
identify which CRV a certificate belongs to. To deploy
Let’s Revoke, it is necessary to make adjustments on the
client as well as on the CA side. Incremental deployment
is also possible. [8]

6.3. CRT

A certificate revocation table (CRT) is a pull-based
revocation approach. To make it work, a server maintain-
ing a certificate working set is needed. The working set
gets updated periodically by querying OCSP responders
or CRL endpoints. The certificate information can be
accessed by the clients by either downloading a file or an
on-demand API. [10] CRT maintains a cache containing
the revocation status of certificates with a high probability
of usage. This is expected to make it more difficult for
attackers to perform an attack and allows the client to
hard-fail. CRTs can contain revoked and non-revoked
certificates. When only used for revoked certificates it
does not use a lot of bandwidth. The required bandwidth
for a CRT is easily scalable, also over the next years, since
it is only directly influenced by the number of certificates
used by the client. Even during a mass revocation event, it
would remain steady since the revocation status of every
certificate is already in the working set of the CRT no
matter if it is revoked or not. CRT allows being updated
according to the needs of the consumer. It allows for the
privacy of the client. A CRT would need to be deployed
on the server by an administrator. CRT is still new and
there are plans for improvements, which can be read about
in [10].

6.4. OCSP Must-Staple

OCSP imposes a burden on the client and exposes
the browsing behavior of the client to the CA responsible
for issuing the certificate to the server. To combat these
problems, OCSP Stapling got introduced. Using OCSP
Stapling a server must periodically query an OCSP request
to the CA and cache this signed response, proving the
validity of the certificate. When a client then wants to
establish a connection to the server, the server must send
the signed response stapled with the certificate to the client
during the TLS handshake. [3]
OCSP Stapling solves the initial problems of OCSP. How-
ever, the clients can still choose to continue connecting to
the server if the OCSP response is not provided. Connect-
ing without a signed response is called soft-failing. OCSP
Must-Staple was invented to address this problem. To
use OCSP Must-Staple certificates must include an OCSP
Must-Staple extension. Available OCSP responders, cer-
tificates that support OCSP Must-Staple, and browsers
that enforce the OCSP Must-Staple extension are required
to implement OCSP Must-Staple. Thus, a change for
every player involved in certificate revocation is necessary.
However, in an experiment conducted 36.8% of OCSP
Responders had at least one outage that lasted for hours,
only 0.02% of certificates support OCSP Must-Staple and
the only browser to implement OCSP Must-Staple so far
is Firefox. [3] Additionally, an attacker could perform
a DoS attack targeted at the OCSP responders, making
the website inaccessible during this period to clients.
Furthermore, OCSP Must-Staple had problems with CA
inconsistencies and bugs in server implementation. [10]

6.5. Comparison

To evaluate and compare the different approaches the
following section takes a look at them through six cate-

Seminar IITM SS 21,
Network Architectures and Services, November 2021 17 doi: 10.2313/NET-2022-01-1_04

CRLite Let’s Revoke CRT OCSP Must-Staple
Efficiency 18 MB & 580 kB/day 2 MB & 114 kB/day 6.71 MB & 205 kB/day 1.3 kB/TLS handshake

Privacy yes yes yes yes
Auditability yes yes yes yes
Timeliness 1-2 days 1-2 days 1-2 days 4 days

Deployability High Medium Medium High
Failure Model Hard-Fail Hard-Fail Hard-Fail Soft-Fail

TABLE 1: Comparison Of The Different Methods [8], [10]

gories of measurement [8], [10]:
Efficiency is defined by bandwidth consumption for the
client.
Timeliness Measures in which intervals the methods get
updated.
Failure Model Evaluates how the client behaves when
unable to get the revocation status of a certificate.
Privacy Does the approach ensure the privacy of the
client?
Deployability How high are the deployment require-
ments?
Auditability Is the client able to audit the result for the
revocation check?
The comparison of the different methods is in table 1.

7. Evaluation

In table 1 you can see the values for the different
methods. When looking at efficiency, the first value is the
initial download and the second value is the daily update
to maintain the set. OCSP Must-Staple is the only method
not having an initial download, but it needs 1.3 kB for
every TLS handshake performed. This would impose a
bandwidth burden on the client. Let’s Revoke seems to
be the best when it comes to efficiency, but CRT also has
the option of using only revoked certificates which would
be considerably lower with 1.92 kB & 0.21 kB/day. None
of the methods exposes the privacy of the client, and all
of them are auditable. There is also no difference in the
timeliness of the methods with OCSP Must-Staple as the
exception, which gets updated only every four days. When
it comes to deployability, both CRLite and OCSP Must-
Staple demand more change and effort being integrated
into the existing infrastructure. Let’s Revoke, and CTR
does not demand much change and can be deployed with
only demanding change from two actors in certificate
revocation less. All of the methods hard-fail. OCSP Must-
Staple also should hard-fail in theory, but that did not hold
true when it was tested in real life. Having the categories
of measurement in mind one might consider that Let’s
Revoke is the best choice. This is because of the size
of the downloadable files and the deployability. However,
when it comes to scalability and the ability to deal with
mass revocation CTR is the more sensible choice.

8. Conclusion

This paper introduced certificate revocation and an
overview of today’s status quo for revocation validation
and potential methods to improve the said standard. First,
it was assessed how well the three different actors involved
handle certificate revocation. The conclusion was that
there is no established standard and revoked certificates

get completely ignored by mobile browsers and there
is no certainty for desktop browsers. Mozilla Firefox
and Google Chrome both abandoned CRL and started
deploying their CRLs: OneCRL and CRLSet. However,
these only cover a tiny fraction of the present revoked
certificates. Server administrators must manually revoke
certificates which is not a fail-proof system and opens
up time-frames of vulnerabilities. In the last years, ap-
proaches and methods of handling this problem were pro-
posed. We looked at a few of them and assessed which one
is best for real-life deployment. There are three different
types of approaches: Pull-based, push-based, and network-
assisted. The methods introduced were: CRLite (push-
based), CRT (pull-based), Let’s Revoke (push-based) and
OCSP Must-Staple (network-assisted). Comparing these
approaches led us to the conclusion that Let’s Revoke is
the most suitable method for real-life deployment at the
moment. However, CRT is still in active development and
might be more suitable in the future

References

[1] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs,
A. Mislove, A. Schulman, G. Wilson, Christo Eason, B. Noble,
and I. N. Sneddon, “An End-to-End Measurement of Certificate
Revocation in the Web’s PKI,” IMC ’15: Proceedings of the 2015
Internet Measurement Conference, pp. 183–196, 2015.

[2] K. Kiyawat, “Do Web Browsers Obey Best Practices When Vali-
dating Digital Certificates?” 2014.

[3] T. Chung, J. Lok, B. Chandrasekaran, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, J. Rula, N. Sullivan, and C. Wilson, “Is the
web ready for ocsp must-staple?” IMC ’18: Proceedings of the
Internet Measurement Conference 2018, pp. 105–118, 2018.

[4] “What percentage of internet traffic is mobile?” https://www.
oberlo.com/statistics/mobile-internet-traffic, accessed: 2021-03-22.

[5] “Usage share of operating systems,” https://en.wikipedia.org/wiki/
Usage_share_of_operating_systems, accessed: 2021-03-22.

[6] “Network security services,” https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS, accessed: 2021-03-22.

[7] “Ca:revocationplan,” https://wiki.allizom.org/CA:RevocationPlan,
accessed: 2021-03-22.

[8] T. Smith, L. Dickinson, and K. Seamons, “Let’s Revoke: Scalable
Global Certificate Revocation,” Xu, Sadeghi (Hg.) 2020 – Proceed-
ings 2020 Network and Distributed, 2020.

[9] L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. Mislove,
A. Schulman, and C. Wilson, “Analysis of SSL certificate reissues
and revocations in the wake of heartbleed,” IMC ’14: Proceedings
of the 2014 Conference on Internet Measurement Conference, pp.
489–502, 2014.

[10] L. Dickinson, T. Smith, and K. Seamons, “Leveraging locality of
reference for certificate revocation,” ACSAC ’19: Proceedings of
the 35th Annual Computer Security Applications Conference, pp.
514–528, 2019.

[11] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
and C. Wilson, “CRLite: A Scalable System for Pushing All TLS
Revocations to All Browsers,” 2017 IEEE Symposium on Security
52017, pp. 539–5556, 2017.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 18 doi: 10.2313/NET-2022-01-1_04

Optimizations for Secure Multiparty Computation Protocols

Leilani Tam von Burg, Christopher Harth-Kitzerow∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: leilani.tam-von-burg@tum.de, christopher.harth-kitzerow@outlook.de

Abstract—The BGW protocol is a protocol for secure multi-
party computation based on Shamir’s secret sharing scheme.
It allows the computation of functions by representing them
as arithmetic circuits composed of addition and multiplica-
tion gates. Many steps of the protocol are quite efficient as
they do not require encryption or communication. However,
multiplication gates require communication and impact the
efficiency of the protocol negatively. Therefore, optimization
techniques improving the multiplication operation have been
developed. In this paper, we focus on the optimization
technique of Beaver triples.

Index Terms—BGW Protocol, Shamir’s secret sharing,
Beaver Triples

1. Introduction

There exist many applications where there is a need
for computations that keep the inputs secret. Examples
of this are secure auctions, voting, secure machine
learning or computations on databases that hold private
information. Secure Multiparty Computation Protocols
do exactly this. They enable a joint computation on a
group of parties without disclosing the private inputs of
the participants [1].

The idea of Secure Multiparty Computation Protocols
was first introduced by Yao in the 1980s [1], [2]. He
illustrated the necessity for this type of computation with
the two millionaires problem. Here, two millionaires
want to determine who is richer without disclosing their
individual wealth. Yao’s protocol is based mainly on
garbled circuits [2].

Later, different protocols were developed to expand
from two party to multiparty computation and improve
on efficiency. The implementation of Fairplay in 2004
is considered the first proper implementation of such a
protocol [3]. Admittedly, its scalability and performance
was very limited. Today, more efficient implementations
exist and practical uses are becoming more and more
common. This paper introduces the BGW protocol and
one possible optimization technique often implemented in
combination.

2. BGW Protocol for Secure Multiparty
Computation

The BGW protocol was introduced by Ben-Or,
Goldwasser and Wigderson [4]. It differs from other

well known protocols in that it is not based on garbled
circuits. Instead, it is based on Shamir secret sharing [5].
The protocol can compute any function f over a field
F by representing the function as an arithmetic circuit
composed of addition, multiplication and multiplication-
by-constant gates. Multiplication by a constant can be
represented by an addition and will therefore be omitted
in the further discussion. The evaluation of the circuit is
done gate-by-gate.

Since we require the computation to be secure, each
input wire is only known by one party that desires to keep
it private. Additionally, no intermediate values should be
revealed during the evaluation of the circuit. In order to
achieve the desired privacy during the evaluation of the
function, the value of each wire is kept secret by hiding it
in a polynomial of degree t which is shared between the
parties.

2.1. Shamir’s Secret Sharing

Since secret sharing is a fundamental part of the
BGW protocol, it will be shortly introduced. The idea
behind secret sharing can be illustrated by the following
example. Imagine a treasure chest which requires multiple
keys to be opened. These keys are held by different
parties. Therefore, the treasure can only be accessed
when the parties come together to unlock the chest.

The protocol can be split into two phases: a sharing
phase and a reconstruction phase. During the sharing
phase, the secret s is split into shares held by the different
parties. Firstly, the secret s must be "locked in the chest".
This is done by encrypting the secret in a polynomial of
the following form.

f(x) = atx
t + ...+ a1x+ a0 (1)

where a0 = s and at, ..., a1 are random coefficients, such
that f(0) = s. Each party Pi then receives one point
(αi, [f(αi)]) on the polynomial, which we refer to as its
share. This value can be interpreted as the "key" held by
that specific party. For clarity, we will refer to shares by
using square brackets throughout the paper.

The threshold t is chosen such that it corresponds to
the assumed maximum number of faulty parties. There-
fore, t+1 points are required to reconstruct the secret by
interpolating the polynomial. Less points will not reveal
the secret. This corresponds to the reconstruction phase.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 19 doi: 10.2313/NET-2022-01-1_05

2.2. Security scenarios for the BGW protocol

When choosing a threshold value t for the BGW
protocol, we differentiate between two different types of
faulty parties.

Semi-honest security A semi-honest adversary is
considered honest-but-curious. This means it follows
the protocol honestly but it may try to learn as much
information as possible during the execution. Therefore,
we consider it a passive adversary. This includes parties
colluding and pooling their information together in order
to learn as much as possible [1].

For every n-ary function f(x1, ..., xn), there exists
a protocol for computing f with perfect security in the
presence of a semi-honest adversary controlling t < n/2
parties. This means we require an honest majority in this
case [4]. Evidently, we cannot allow any adversaries in a
two party computation. In this situation, the secret inputs
are encrypted with linear functions. Therefore, knowing
the gradient allows direct reconstruction of the secret.

Malicious security A malicious adversary is active,
which means it can take any action it desires and deviate
from the protocol. Therefore, it can provide any input it
wants as well, which can affect the honest parties inputs.
A malicious adversary can control up to t < n/3 parties
while ensuring perfect security [1].

It should be noted here, that the BGW protocol is
secure from an information-theoretic standpoint when ad-
hering to the above choices for the threshold t [4]. It
does not rely on cryptographic assumptions. This means
that the protocol is secure for adversaries with unlimited
computing power. For example, quantum computers do
not pose a threat to the security.

2.3. BGW Protocol

The BGW protocol can be subdivided into three main
phases:

1) Input sharing phase
2) Computation of the circuit gate-by-gate (addi-

tions, multiplications)
3) Output Reconstruction phase

Figure 1: Example of a function represented by an arithmetic circuit
with inputs x1, ..., xn. The input values as well as the intermediate
values are secret shared to ensure their privacy over the entirety of the
circuit.

2.3.1. Input sharing phase. The input sharing phase
of the BGW protocol follows the Shamir secret sharing
scheme. Each party Pi encrypts its input xi in a random
polynomial fi(x) of degree t, where fi(0) = xi and then
sends each party Pj a share [fi(αj)]. This way, all parties
obtain shares of the other parties inputs.

2.3.2. Computation of the circuit. At each gate, the
parties compute the shares of the output wire using the
shares of the input wires. The intermediate values stay
hidden throughout the circuit.

Addition Gates The computation of addition gates
is inexpensive since it does not require communication.
Let a and b be the input values and ga(x) and gb(x) be
the polynomials hiding the input values according to the
secret sharing scheme. ga(x) + gb(x) = ha+b(x) is the
operation at the gate and α1, ..., αn are the interpolation
points of the individual parties shares. Initially, each
party Pi holds the shares [ga(αi)] and [gb(αi)] of the
input which it can add locally. Then, each party holds
a share [ha+b(αi)] of the output ha+b(x). This share of
the output can be used directly as the input at the next
gate, since there is no need for communication during
addition operations. Computations can be done locally
on the shares throughout the circuit (as long as they are
all additions) until the final output, where the shares are
combined to recover the sum. To do so, the constant term
ha+b(0) = a + b is evaluated. The output polynomial is
still of degree t.

Figure 2: Illustration of an addition gate on the left and a multiplication
gate on the right with the secret shared wire inputs ga(x) and gb(x) of
the input values a and b.

Multiplication Gates The computation of
multiplication gates is not as straight forward. Simply
multiplying the shares locally as it is done for addition
causes two problems. Firstly, the degree becomes 2t
after a single computation. Multiple multiplication gates
cause the degree of the polynomial to become too large.
There are not enough interpolation points to recover the
result anymore. Additionally, the product of two random
polynomials is not fully random anymore. We need a
way to compute the multiplication while keeping the
polynomial at degree t and ensuring it stays random.
This is referred to as degree reduction and randomization
[4].

Degree reduction and randomization Assume input
values a and b. Degree reduction relies on following
property of polynomials:

For any polynomial h(x) with degree t < n, there exist
constants λ1, ..., λn and interpolation points α1, α2, ..., αn
such that:

h(x) = λ1[h(α1)] + ...+ λn[h(αn)]

h(0) = ab

Seminar IITM SS 21,
Network Architectures and Services, November 2021 20 doi: 10.2313/NET-2022-01-1_05

That is, we can represent the result of the multiplica-
tion by a linear combination h(x) =

∑2t
i=1 λi[h(αi)] of

the parties shares.

This can be illustrated more thoroughly by observing
the following equations. Let h(x) = h2tx

2t+...+h1x+ab
be a polynomial of degree 2t hiding the secret h(0) = ab.
In equation (2), we multiply an invertible Vandermonde
matrix with the coefficients of the polynomial. This op-
eration corresponds to the evaluations of the polynomial
h(x) on the interpolation points α1, α2, ..., αn.




1 α1 α2
1 ... α2t

1

1 α2 α2
2 ... α2t

2
...
1 αn α2

n ... α2t
n







ab
h1
...
h2t


 =




h(α1)
h(α2)

...
h(αn)


 (2)

However, since our goal is to compute our secret ab with
each parties shares [h(αi)], we must invert the matrix. A
simple way to invert the Vandermonde matrix is explained
in [6]. For example, a Vandermonde matrix

V =



1 c1 c21 c31
1 c2 c22 c32
1 c3 c23 c33
1 c4 c24 c34


 (3)

has the inverse V −1=

This shows that in our case, the entries of the inverted
matrix depend only on αi, the points where the function is
evaluated and which are public. We introduce the values
λi corresponding to each of the individual entries of the
first line of the inverted matrix.




ab
h1
...
h2t


 =



λ1 . . . λn
...
. . .







h(α1)
h(α2)

...
h(αn)


 (4)

We are only interested in the first line of (3) since
the only coefficient of interest is the secret ab. This
corresponds exactly to the linear combination introduced
earlier.

The protocol followed to compute the multiplication
is the following.

• Each party Pi computes its share

[h(αi)] := [ga(αi)][gb(αi)] (5)

locally.

• [h(αi)] is then secret shared with the other parties
using a degree t polynomial Hi(x)

• Now, each party holds a share
[H1(αi)], ..., [Hn(αi)] of each other parties
polynomial Hi(x). Each party can compute the
output

[H(αi)] = λ1[H1(αi)] + ...+ λn[Hn(αi)] (6)

locally.

• Each party Pi now holds a share [H(αi)] of
H(x) := λ1H1(x) + ...+ λnHn(x).

It is important to note that, because each
H1(x), ...,Hn(x) is of degree t, H(x) is again of
degree t. Additionally, each H1(x), ...,Hn(x) is random
since they are created by following the secret sharing
scheme where all coefficients are random. Therefore,
H(x) is also random, since the addition of random
functions is still random.

We have achieved a dimensionality reduction
and ensured the randomness of the polynomial as
desired. Unfortunately, the protocol for the computation
of multiplications requires communication. This is
inefficient. Therefore, optimization techniques such as
Beaver triples have been developed to alleviate the
communication costs. This will be further explained in
the next section.

Output Reconstruction phase The output of a mul-
tiplication can be computed by evaluating

H(0) = λ1H1(0) + ...+ λnHn(0)

= λ1[h(α1)] + ...+ λn[h(αn)]

= ab

3. Beaver Triples as Optimization Technique

The majority of the cost of the BGW protocol is
caused by the communication required for multiplication
operations. Ideally, a portion of the cost would be moved
to the pre-processing phase. Unfortunately, the operations
are dependent on the circuit inputs, which only become
available during the online phase. Beaver triples allow
for a way to move the majority of the communication to
the pre-processing phase given even these circumstances.
The basic idea is that the parties produce shared data
during the offline phase that does not require information
on the inputs [1].

A Beaver triple, also known as multiplication triple
is a triple of three secret shared values [a], [b], [c] where
a, b are uniform random values unknown to all parties
and c = ab.

3.1. Generation of the triples

There are different ways of generating the
multiplication triples. A first option is trusted party
generation. This protocol requires an honest third party
that samples the triple (a, b, c) and distributes shares to
the parties participating in the computation. The third
party does not participate in the actual computation at all
and does not have to be trusted with the actual inputs.
However, it must compute the triples correctly and refrain
from sharing their values. A second option is based on
oblivious transfer which shall be shortly introduced.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 21 doi: 10.2313/NET-2022-01-1_05

Oblivious Transfer A sender S holds two secrets
x0, x1 and a receiver R holds a choice bit b ∈ {0, 1}.
The receiver learns xb while staying oblivious to the
other secret x1−b and the sender does not learn anything
about if or what information was transferred.

In the following, an example of generating triples
based on oblivious transfer is illustrated. Say Alice
and Bob want to generate a beaver triple. Firstly, Alice
randomly samples values (xA, yA) and rA and Bob
randomly samples values (xB , yB) and rB .

Next, Alice acts as the sender in an oblivious transfer
with the input pair (rA, xA⊕rA). Bob acts as the receiver
using yB as the selection bit. If yB = 0, he learns rA,
else, he learns xA ⊕ rA. In total, he learns xAyB ⊕ rA.
The same thing is done in the other direction, so Alice
learns xByA ⊕ rB .

Now, Alice computes

zA ← rA ⊕ xAyA ⊕ xByA ⊕ rB (7)

and Bob computes

zB ← rB ⊕ xByB ⊕ xAyB ⊕ rA (8)

This results in

zA ⊕ zB = (xA ⊕ xB)(yA ⊕ yB) (9)

. Therefore, (xA, xB), (yA, yB), (zA, zB) correspond to a
Beaver triple.

Another option for the generation of the triples is
based on homomorphic encryption [7], a way of com-
puting on encrypted data without having to decrypt it.

3.2. Computing multiplications with Beaver
triples

During the online step, the beaver triples are
used during computation to diminish the necessary
communication. Assume we generated a triple (a, b, c)
using one of the generation methods. Additionally, we
have the two input values α, β that we would like to
securely multiply with each other. The parties hold secret
shares of the input values. We define these as [vα] and
[vβ]. The computation with the beaver triples follows the
following protocol [1].

1) Each party computes [vα − a] and [vβ − a]
locally. Then, all parties publicly announce their
shares in the form d = vα − a and e = vβ − b
(the secret values vα and vβ are hidden by a and
b).

2) Following equality holds:

vαvβ =(vα − a+ a)(vβ − b+ b)

=(d+ a)(e+ b)

=de+ db+ ae+ ab

=de+ db+ ae+ c

A share of [vαvβ] = de + d[b] + e[a] + [c] is
computed locally by each party.

Therefore, each party must only broadcast two values d
and e per multiplication. This is much more cost effec-
tive than the communication required in plain BGW to
compute multiplications.

4. Efficiency of BGW Protocol

Since, the BGW protocol uses secret sharing to hide
its inputs, it does not rely on encryption. Generally,
this is considered more efficient than a cryptographic
approach. But as we have seen, certain operations involve
complications and communication that strongly impact
the efficiency.

The BGW protocol is very efficient for arithmetic
circuits containing mostly additions [8]. Unfortunately, it
is not ideal for functions requiring many multiplications.
As a rule of thumb, we assume communication is much
more expensive than computation and decryption. This
means that tasks like matrix multiplications are difficult
to solve with the BGW protocol. This would require
many multiplication gates and a very large cost related
to communication. For example, neural networks require
extensive matrix multiplications and are not ideal for the
BGW protocol.

Additionally, certain operations are expensive to rep-
resent as arithmetic circuits. Arithmetic circuits operate
over a finite field F that must be set in advance and be
large enough to prevent overflow [9]. In order to compute
operations such as comparisons, bit-shifts and equality
tests, a bit-decomposition is required. This conversion is
expensive. Therefore, these are also operations that should
be avoided with the BGW protocol.

5. Conclusion

This paper provided insight into the functionality of
the BGW protocol for secure multiparty computation. Per-
haps the most interesting component of this protocol is the
degree reduction step, necessary to allow the computation
of multiplication gates in a secure way. Unfortunately, this
step also has significant negative impact on the efficiency
of the protocol. This is why optimization techniques have
been implemented to alleviate this impact, such as the
Beaver triples introduced in this paper. All in all, the BGW
protocol is often more efficient than protocols relying on
a cryptographic approach. This depends on the type of
function being evaluated. In general, operations based on
many multiplications might be more efficiently computed
with a different protocol.

References

[1] D. Evans, V. Kolesnikov, and M. Rosulek, A Pragmatic Introduction
to Secure Multi-Party Computation, 2018, vol. 2, no. 2-3. [Online].
Available: http://dx.doi.org/10.1561/3300000019

[2] A. C. Yao, “Protocols for secure computations,” pp. 160–164, 1982.

[3] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay — a secure
two-party computation system,” 06 2004.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 22 doi: 10.2313/NET-2022-01-1_05

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness the-
orems for non-cryptographic fault-tolerant distributed computation,”
in Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, ser. STOC ’88. New York, NY, USA: Association
for Computing Machinery, 1988, p. 1–10.

[5] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
p. 612–613, Nov. 1979.

[6] E. Rawashdeh, “A simple method for finding the inverse matrix of
vandermonde matrix,” 01 2020.

[7] S. University, “Cs 355: Topics in cryptography.” [Online]. Available:
https://crypto.stanford.edu/cs355/18sp/lec7.pdf

[8] T. Rabin, “Secure multiparty computation,” 2014. [Online].
Available: https://www.youtube.com/watch?v=NOtsxHoIcWQ&t=
618s&ab_channel=Technion

[9] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok:
General purpose compilers for secure multi-party computation,” in
2019 IEEE Symposium on Security and Privacy (SP), 2019, pp.
1220–1237.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 23 doi: 10.2313/NET-2022-01-1_05

Seminar IITM SS 21,
Network Architectures and Services, November 2021 24

Taxonomy of the Performance of P4 Targets

Irina Tsareva, Dominik Scholz∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: irina.tsareva@tum.de, {scholz,gallenmu}@net.in.tum.de

Abstract—The P4 language enables abstraction and flexible
programming of the data plane for various hardware- or
software-based targets, like field programmable gate arrays
(FPGAs) or software switches for general-purpose CPUs.
Each of these targets has its own limitations in available
parallelization (e.g., multi-core), memory resources (e.g.,
RAM), or number of high bandwidth ports. Thus, one P4
program may have different latency and throughput char-
acteristics, depending on the target machine. Analyzing the
performance differences for P4 targets is crucial to identify
bottlenecks and predict the performance of any P4 program.
In this paper, we provide a comparison of performance
measurements of P4 targets and show the impact of different
P4 constructs. Hardware-based solutions have the lowest la-
tency and highest throughput. Furthermore, we describe two
model approaches to predict the performance of P4 targets:
models based on benchmarking and on stochastics. While
benchmarking-based models allow a straight performance
comparison, they are highly dependent on target-specific
information, and thus, may not be applicable to every target.
Whereas the probabilistic model is implemented to be more
general and can be further refined with information about
the target.

Index Terms—programmable data plane, P4, performance,
performance model

1. Introduction

Software-defined networking (SDN) [1,2] enables
faster deployment, centralized management, and scala-
bility through network control. This architecture decou-
ples the control and data plane physically, such that the
software-based control plane controls the data plane (e.g.,
switches, routers) over an open protocol like OpenFlow.
Consequently, to support new header fields the Open-
Flow API specification has to be extended and hardware
switches redesigned or reprogrammed (e.g., application-
specific integrated circuits (ASICs)), leading to an in-
creased complexity of the API, additional deployment
cycles, and a need for domain experts. The program-
ming protocol-independent packet processors (P4) lan-
guage aims to solve these issues by providing an abstrac-
tion layer between an API such as OpenFlow and the data
plane.

P4 [2] is a protocol-independent, target-independent,
and field reconfigurable language that can express how the
data plane has to process packets. Protocol-independent
means that there is no set of supported protocols (e.g.,

IPv4, Ethernet), and thus, this set has to be defined as de-
sired. With P4, different supported platforms (P4 targets)
can be programmed, like field programmable gate arrays
(FPGAs), ASICs, or network processing units (NPUs).
Field reconfigurable describes the property that P4 targets
can be reconfigured after they were shipped.

Various implementations of P4 targets exist; either
software- or hardware-based. Although the hardware-
based solutions provide high bandwidth ports and spe-
cialized many-core architectures, they differ highly in their
price, e.g., about 7,000$ for a NetFPGA SUME board [3],
and maintenance costs. Moreover, each implementation
uses different libraries, compilers, and optimization tech-
niques to enable different features (e.g, stateful opera-
tions), and thus, are not suitable for every network setup.
Yet, the implementation also influences the latency or
throughput of P4 programs. It is crucial to understand
and estimate the performance of P4 programs on a P4
platform correctly to have predictable execution and to
identify optimization possibilities of a given setup.

At present, two approaches for performance estima-
tion of arbitrary P4 programs exist: models based on
benchmarking and on stochastics. The goal of this paper
is to provide an overview of both approaches and their
implementations. To this end, we focus on a selection of
P4 targets (Section 2) and describe necessary performance
measurements for the benchmarking-based model (Sec-
tion 3). We present implementations of the benchmarking-
based approach and one probabilistic model and discuss
their advantages and disadvantages (Section 4).

2. Background

A device must explicitly support P4 programmability,
otherwise it is not possible to program the device via P4.
To understand the architecture of a P4 target, knowledge
about the P4 language is needed.

2.1. P4 Programming Language

A P4 program consists of three stages: the parser,
pipeline, and deparser stage. The parser is a finite state
machine that takes the arriving packets (ingress queue)
and extracts its headers into a stack. The pipeline includes
multiple match-action units that process the parsed head-
ers by performing user-defined actions such as modifi-
cations upon them. The match-type can be either exact,
ternary, or lpm. Finally, the deparser reconstructs the
packets with the modified, added, or removed headers
and sends them to the outgoing packet buffer (egress

Seminar IITM SS 21,
Network Architectures and Services, November 2021 25 doi: 10.2313/NET-2022-01-1_06

queue) or drops them. In this context, we call the parsers,
actions, and tables P4 constructs. They are the basic
blocks out of which arbitrary P4 programs can be build. A
P4 programs defines network functions (NFs), like NATs
or firewalls. [4]

The P4 compiler consists of two parts: A generic
open-source front-end and a target-specific back-end com-
piler (provided by the vendor). The front-end compiler
transforms the P4 program into an intermediate represen-
tation (IR), which is then mapped into target-specific code
(e.g., in C or Verilog) by the back-end compiler. [4]

P4 targets implement a target-specific P4 architecture
model which describes the interface as well as fixed-
function and programmable blocks. This interface enables
the P4 constructs to be mapped onto the target. [5]

2.2. P4 Targets

We present a selection of P4 targets ordered by their
degree of flexibility (descending), specialization (ascend-
ing), and price (ascending). Although GPU-based imple-
mentations exist [6], we do not discuss them here, since
not enough performance measurement results exist.

2.2.1. Software-based. Software-based implementations
can be run on a general-purpose CPU. They can make
use of, e.g., the heap memory and available cores. They
are more flexible to implement, since there are hardly
any hardware constraints, but their behavior might be
non-deterministic due to scheduling or interrupts during
runtime [7].

Behavioral Model version 2 (bmv2) – bmv2 [8] is
the reference software switch implementation of p4.org.
This switch has only developing, testing, and debugging
purposes due to its high latency and low throughput (up
to 1 Gbit/s).

T4P4S DPDK-based – The data plane development
kit (DPDK) is a collection of user-space libraries to ac-
celerate packet processing. It includes multiple features to
accelerate software-switches. The P4 program is compiled
through T4P4S into C code that can be run on top of
DPDK. [4]

PISCES – PISCES [9] is a software switch that is
based on the virtual Open vSwitch (OVS) and uses the
DPDK fast path instead of the less performant kernel
modules. Additionally, the authors added new primitives
to support encapsulation.

BPF-based – P4rt-OVS [10] extends the OVS-DPDK
by the user-space berkeley packet filter (uBPF). These
libraries add support for runtime extensibility and stateful
operations. This implementation introduces a new front-
end P4-to-uBPF compiler.

2.2.2. NPU-based. NPUs consist of “tens of multi-
threaded purpose-built” cores that are optimized for net-
work data packet processing, and thus, they are more
specialized than CPUs. One example is the Netronome
SmartNIC. To program this NPU, the IR is compiled into
C code, and then, into firmware which is loaded onto the
P4 target. [4]

2.2.3. FPGA-based. Hardware design can be described
using a hardware descriptive language (HDL). This design

is then synthesized, placed, and routed onto a specific
FPGA. While developing the design the developer already
has to know the target FPGA so she can meet platform-
specific constraints, such as timing or available resources.
If the constraints are not met, placing and routing will
fail. In case of success, a bitstream can be generated and
flashed onto the FPGA. The advantage is that the hardware
can be optimized for an application.

P4→NetFPGA – P4→NetFPGA [11] is a workflow
on top of the Xilinx P4-SDNet compiler and NetFPGA
SUME to compile P4 code into Verilog code. The target
FPGA is the NetFPGA SUME board.

P4-to-VHDL – P4-to-VHDL [12] compiles a P4 pro-
gram into VHDL code without having an IR.

P4FPGA – P4FPGA [13] extends the p4.org front-
end compiler by a back-end that first generates Bluespec
System Verilog code. Then, this code is converted into
Verilog code that can be synthesized to either Xilinx
or Altera FPGAs. The generated code contains a P4
programmable packet-processing pipeline and a fixed-
function pipeline.

2.2.4. ASIC-based. Hardware switches that are hard-
wired for a specific application are ASIC-based. Their
function cannot be reprogrammed making them less flex-
ible, but more specialized. Intel Barefoot Tofino 1 [14]
is such an Ethernet switch. It uses static RAM (SRAM)
and ternary content-addressable memory (TCAM) for P4
tables, depending on the match types [15].

3. Performance of P4 Targets

In this section we compare the performance of a
selection of P4 targets on basic P4 constructs. Performance
metrices are latency and throughput. Typically, the latency
and throughput are best for an FPGA and ASIC, since they
have application-specific, optimized hardware. However,
hardware constraints limit their expressibility.

3.1. Latency

The overall latency depends on the amount of occur-
rences of basic P4 constructs in a P4 program. Table 1
depicts the impact of eight P4 constructs on the bmv2,
T4P4S switch, PISCES, Netronome SmartNIC, and NetF-
PGA SUME (compiled via P4→NetFPGA).

For instance, modifying header fields has a negligible
impact on the T4P4S switch, Netronome SmartNIC, and
NetFPGA SUME board since they write the complete
header, even if a single field is changed [4]. Since whole
headers are emitted in the P4 deparser syntax [4] we
expect to see a similar behavior for bmv2 and PISCES.

Comparing the targets listed in Table 1, the NetFPGA
SUME board has the lowest overall latency for each P4
construct, while bmv2 has the highest. The T4P4S switch
has comparable latency to the Netronome SmartNIC with
packet sizes of 256 Bytes (B); for packets larger than
1000B or 1500B the Netronome SmartNIC has a better
latency by 3ns-7ns (depending on the amount of the
occurrence of P4 constructs). However, the Netronome
SmartNIC scales the worst with increasing pipeline and
action complexity. [4]

Seminar IITM SS 21,
Network Architectures and Services, November 2021 26 doi: 10.2313/NET-2022-01-1_06

P4 constructs Impact on Targets

bmv2 [7] T4P4S
Switch [4] PISCES [7] Netronome

SmartNIC [4]

NetFPGA
SUME

(P4→NetFPGA) [4]

Parsing Headers - - O(n2) + - O(n) - - - O(n)
Modifying Header Fields n.a. + n.a. + +
Operation Executions - - O(n) n.a. - - O(n) + n.a.
Modifying Headers n.a. + n.a. - - O(n) +
Copying Headers n.a. + n.a. - +
Removing Headers n.a. + + n.a. - - O(n) + +
Adding Headers n.a. - n.a. - - O(n2) -
Adding Tables - - O(n2) + + - - O(n) - O(n)

TABLE 1: Latency impact of P4 constructs on P4 targets (median values). (- - significant degradation (2.5µs – >30.3µs),
- degradation (1.5µs–2.5µs), + no or a slight impact (0µs–1.5µs), ++ improvement (0.1µs–2µs), n.a. no value available)

Osiński et al. [10] show that the latency of P4rt-OVS
increases lineary for increasing number of match-action
tables and is constant for varying number of table entries.

Vörös et al. [16] demonstrate that their implementa-
tion of T4P4S has comparable latency as PISCES. How-
ever, they do not compare it to isolated P4 constructs.

On the other hand, compiler and hardware design
optimizations further decrease the overall latency. For
example, P4rt-OVS [10], PISCES [9] and P4FPGA [13]
implement post-pipeline editing, which postpones the
modification of packets to the deparser. This reduces
the performance at the deparser stage. PISCES merges
multiple match-action pipelines into one, which leads to
non-changing latency for increasing number of tables. P4-
to-VHDL [12] introduces offset width and multiplexer
optimizations. However, the authors do not provide per-
formance comparisons with other P4 targets which is why
we cannot classify its performance relative to the listed P4
targets. Zhou et al. [17] reduce the latency of Netronome
SmartNIC and bmv2, by chaining NFs, reducing redun-
dant functions, and bypassing undesired functions.

3.2. Throughput

Parallelism, like introduced by FPGAs, may signif-
icantly increase the throughput. P4FPGA outperforms
PISCES also in terms of throughput. Moreover, through-
put may depend on the complexity of the P4 program:
If the number of headers increases, the throughput of
P4FPGA (on NetFPGA SUME) and PISCES (on a CPU)
decreases. [13]

PISCES [9] (optimized) has a smaller throughput by
2% compared to OVS. If new protocols are added, the
throughput decreases, e.g., about 35% from 51.1Gbps to
33.2 Gbps if post-pipeline editing is activated.

Osiński et al. [10] show for three network functions,
that the throughput of P4rt-OVS is comparable to PISCES
and OVS for packet sizes of 128B and 256B; For 512B
the throughput is larger than for PISCES.

P4-to-VHDL [12] can parse traffic with a complex
protocol structure with 100 Gbps. The optimized Intel
Barefoot Tofino 1 [14] can achieve a bandwidth of 100
Gigabit Ethernet per port.

4. Performance Models

Evaluating each possible P4 application and combina-
tion of P4 constructs for each P4 target is neither feasible

nor desirable. A performance model should describe the
estimated performance of an arbitrary complex P4 pro-
gram for every or a specific P4 target. Next, we describe
two approaches to model estimation and discuss their
advantages and disadvantages.

4.1. Models Based on Benchmarking

This approach combines performance measurements
of isolated P4 constructs obtained through benchmarking
with the occurrences of P4 constructs obtained through
P4 program analysis. Since the benchmarks do not test
for real-world workloads but for core features of P4, they
are called synthetic benchmarks. Each feature is tested
in isolation with varying parameters, e.g., incrementally
increasing number of packet headers and fields in the
parser.

WhipperSnapper [7] was the first benchmarking suite
for the P4 language. It contains latency, throughput, and
memory usage measurements against five features: Pars-
ing, processing, state accesses, packet modification, and
action complexity. Additionally, WhipperSnapper includes
target-dependent benchmarks, that test specifically for the
hardware support and usage of ASICs and FPGAs as well
as the latency and throughput of CPUs and NPUs with
reduced scheduling and locking impact.

Harkous et al. [4,5] continue this idea and focus
on eight features related to parsing, processing, packet
modification, and action complexity (see P4 constructs
in Table 1). Yet, their benchmarks focus only on latency.
They explain and validate their model examplary for the
Netronome SmartNIC, NetFPGA SUME board (compiled
via P4→NetFPGA), and T4P4S switch. Each of these has
target-specific latency measurement results. The slopes of
the measurement results for each feature can be (piece-
wise) interpolated and stored in a target-profile-vector.
This vector is calculated only once for each target since it
does not change. Next, the P4 program has to be analyzed
and the occurence of P4 constructs determined. The esti-
mated average latency of a network function is then the
sum of the prior measured latencies of the (isolated) P4
constructs with respect to their amount of occurrences.

Scholz et al. [15] suggest to derive models based
on the weaknesses of a target. In the case of software
switches, the weakness is their significantly varying la-
tency due to different implementations of P4 elements
(e.g., the match types) and the underlying memory access
pattern. Whereas the resource utilization is a weakness of

Seminar IITM SS 21,
Network Architectures and Services, November 2021 27 doi: 10.2313/NET-2022-01-1_06

ASICs since their available memory limit the complexity
of P4 programs. The authors derive cost functions for
varying properties of the match-action pipeline (e.g., table
entry size and varying table key width lengths) for the
T4P4S switch and Intel Barefoot Tofino 1.

All described models require target specific informa-
tion (e.g., memory resources, software implementation)
to accurately estimate the performance. For instance, the
model of Harkous et al. [4] has an accuracy of more than
94% and is especially accurate for the NetFPGA SUME.
It is less accurate for the Netronome SmartNIC due to its
high dependency on the P4 pipeline. Moreover, latency
measurements of isolated P4 constructs are not always
additive; the measured latency of combined P4 constructs
may be smaller due to e.g., reduced memory access [5].
Therefore, summing the latency of isolated P4 constructs
may reduce the accuracy, too.

Due to the highly target-dependent nature of these
models, the performance measurements for isolated P4
constructs could be made publicly available by researches,
and hence, facilitate and accelerate performance predic-
tion. The P4 program analysis can be done by the com-
piler. [4]

4.2. Models Based on Stochastics

While the previously described approach requires
benchmarking to derive target-specific parameter values
for cost functions, this approach is based on a more
generic probabilistic model (cf. Bayesian network). The
match-action tables of a P4 program are converted into a
control flow graph (CFG). The CFG depicts all possible
execution paths of the program: a node depicts the line
number the program counter points to, while an edge
is a possible transition to the next event; each node is
associated with an execution cost. Thus, the expected ex-
ecution cost of a P4 program is the sum of the conditional
expected costs of an execution path. For instance, if a path
is not executed, it has cost of 0. [18]

The advantage of this framework is that it is generic
enough to be used for every target. To get more accurate
results, additional information about the target (e.g., hard-
ware configuration, runtime environment) can be added in
a modular way. [18]

5. Conclusion and Future Work

The P4 language allows abstraction and programma-
bility of the data plane. Due to its target-independence,
multiple targets can be programmed using the same set
of P4 constructs. However, the performance differ signif-
icantly for each target due to hardware constraints and
software implementations.

In this paper we summarized studies comparing and
analyzing the impact of different P4 constructs on the
latency, throughput, and memory usage. These bench-
marks in addition with information about the target im-
plementation and the control flow can be used to de-
rive performance models. Another approach is to use a
probabilistic model based on expected execution costs.
These performance models can estimate the performance
for arbitrary complex P4 programs, and thus, help create
predictable networks.

As future work, it would be of interest to analyze
other P4 targets (e.g., P4rt-OVS) with respect to P4
constructs and compare these results with the existing
ones. Furthermore, more exhaustive measurements could
be done to also investigate the impact of not yet included
performance aspects, such as jitter or power draw.

References

[1] IBM, “What is Software-Defined Networking (SDN)?”
https://www.ibm.com/services/network/sdn-versus-traditional-
networking, [Online; accessed 22-March-2021].

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker, “P4: Programming Protocol-Independent Packet
Processors,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 3, pp. 87–95, Jul. 2014. [Online]. Available: https:
//doi.org/10.1145/2656877.2656890

[3] Digilent, “NetFPGA-SUME Virtex-7 FPGA Development
Board,” https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-
development-board/, [Online; accessed 08-May-2021].

[4] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8:
P4 with Predictable Packet Processing Performance,” IEEE Trans-
actions on Network and Service Management, pp. 1–14, 2020.

[5] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer,
“Towards Understanding the Performance of P4 Programmable
Hardware,” in 2019 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), 2019, pp. 1–6.

[6] P. Li and Y. Luo, “P4GPU: Accelerate packet processing of a
P4 program with a CPU-GPU heterogeneous architecture,” in
2016 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2016, pp. 125–126.

[7] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim,
J. Rexford, R. Soulé, and H. Weatherspoon, “Whippersnapper:
A P4 Language Benchmark Suite,” in Proceedings of the
Symposium on SDN Research, ser. SOSR ’17. Association for
Computing Machinery, 2017, pp. 95–101. [Online]. Available:
https://doi.org/10.1145/3050220.3050231

[8] p4.org, “BEHAVIORAL MODEL (bmv2),” https://github.com/
p4lang/behavioral-model, [Online; accessed 22-March-2021].

[9] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster,
N. McKeown, and J. Rexford, “PISCES: A Programmable,
Protocol-Independent Software Switch,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. Association
for Computing Machinery, 2016, pp. 525–538. [Online]. Available:
https://doi.org/10.1145/2934872.2934886

[10] T. Osiński, H. Tarasiuk, P. Chaignon, and M. Kossakowski, “P4rt-
OVS: Programming Protocol-Independent, Runtime Extensions for
Open vSwitch with P4,” in 2020 IFIP Networking Conference
(Networking), 2020, pp. 413–421.

[11] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The
P4→NetFPGA Workflow for Line-Rate Packet Processing,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’19. Association
for Computing Machinery, 2019, pp. 1–9. [Online]. Available:
https://doi.org/10.1145/3289602.3293924

[12] P. Benácek, V. Pus̆, and H. Kubátová, “P4-to-VHDL: Automatic
Generation of 100 Gbps Packet Parsers,” in 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2016, pp. 148–155.

[13] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
and H. Weatherspoon, “P4FPGA: A Rapid Prototyping Framework
for P4,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’17. Association for Computing Machinery, 2017, pp. 122–
135. [Online]. Available: https://doi.org/10.1145/3050220.3050234

[14] “Intel® Tofino™Series,” https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-
switch.html#tofino, [Online; accessed 22-March-2021].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 28 doi: 10.2313/NET-2022-01-1_06

[15] D. Scholz, H. Stubbe, S. Gallenmüller, and G. Carle, “Key Proper-
ties of Programmable Data Plane Targets,” in Teletraffic Congress
(ITC32), 32nd International, 2020, pp. 1–9.

[16] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki,
“T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors,” in 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR), 2018, pp.
1–8.

[17] Y. Zhou, J. Bi, C. Zhang, M. Xu, and J. Wu, “FlexMesh: Flexibly
Chaining Network Functions on Programmable Data Planes at
Runtime,” in 2020 IFIP Networking Conference (Networking),
2020, pp. 73–81.

[18] D. Lukács, G. Pongrácz, and M. Tejfel, “Performance guarantees
for P4 through cost analysis,” in 2019 IEEE 15th International
Scientific Conference on Informatics, 2019, pp. 305–310.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 29 doi: 10.2313/NET-2022-01-1_06

Seminar IITM SS 21,
Network Architectures and Services, November 2021 30

A Survey on Domain Impersonation

Derin Amal, Juliane Aulbach∗ Johannes Zirngibl∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: derin.amal@tum.de, aulbach@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—Domain Impersonation (DI) is a term that collects
the different types of attacks that aim to make a user believe
that they are communicating with the desired website when
they are visiting a maliciously designed phishing website
instead. This paper gives an overview of the different cate-
gories of domain impersonation, followed by their different
types. After looking at the history of domain impersonation,
we review countermeasures including browser employed
mechanisms, Certificate Authorities (CAs), Certificate Trans-
parency (CT) logs and an automated Framework called
ShamFinder that was introduced recently but is not used
yet.

Index Terms—domain impersonation, IDN homographs, do-
main name spoofing

1. Introduction

The term Domain Impersonation (DI) refers to all
attacks where attackers with malicious intentions claim
to own a domain that is not theirs. With this method,
attackers can create a phishing website that imitates a
popular website and collect usernames and passwords.
This type of attack can have severe consequences if the
information phished is sensitive information like pass-
words for financial accounts and can costs users and the
domain owner significant amounts of money. To prevent
domain impersonation, one needs to understand the dif-
ferent approaches by users and their characteristics. For
this purpose, we will categorize DI and give an overview
of different countermeasures that address different types
of attacks under those categories and discuss their weak-
nesses.

2. Background

We differentiate between two types of domain imper-
sonations. First is where an attacker receives a certificate
for a domain they do not own and can falsely claim to be
someone they are not. The second type is when attackers
create their domain and deceive the user by naming their
domain similar to the target domain. There are different
methods to achieve this, which we will explain in the
following. These kinds of domain names are referred to
as “spoofing domain names” [1].

It becomes evident that the significant difference is that
in the case of the latter, attackers aim to deceive the user
directly by abusing humans’ proneness to be inattentive.
The first category is characterized by attackers trying

to deceive the browser. In a technical matter, browser
deception means spoofing the mapping of an IP address to
a domain name. Attackers aim to map the IP address of the
target domain to their domain name. How this is achieved
through different methods will be discussed in Section 3.2.
Domain spoofing names, on the other hand, are mapped to
their IP address. The attackers’ goal is to make users think
that the spoofing domain owned by attackers is actually
the domain mapped to the target IP address [2], [3].

To provide the reader with the necessary background
information, we will introduce some terms.

CAs are responsible for issuing certificates that bind
together a domain name and its public cryptographic key.
To verify a CA’s trustworthiness, CAs can issue certifi-
cates for other CAs which leads to a CA hierarchy. [4]

Certificate Transparency (CT) logs aim to make the
certificate issuance process transparent to the public. CT is
an Internet security standard. It keeps a log of certificates
issued by trusted CAs to help users identify maliciously
issued certificates [2], [5].

Internationalized Domain Name (IDN) allows non-
English characters such as Chinese, Cyrillic, and Arabic
to be used in domain names and was first proposed by
Dürst in 1996 [1]. Currently, IDN is used as an Internet
standard [1].

Fully Qualified Domain Name (FQDN) During
this paper, we will use the nomenclature proposed by
Roberts et al. in which the complete domain name (e.g.,
google.example.com) is the fully-qualified domain name
(FQDN). In our example, google.com would be the do-
main to be impersonated called the ”target domain” and
example.com the actual domain owned by the attackers.
[2].

Top Level Domain (TLD) is the last segment of
a FQDN, that is, what follows the rightmost dot, e.g.,
.com in example.com. TLDs can be either generic or
country-specific and classify domain names according to
their purpose, e.g. .edu for educational facilities or their
location, e.g. .de for Germany-based domain names. [6]

3. Domain Impersonation Types and History

In this section, we will give an overview of the dif-
ferent categories of spoofing domain names and browser
deception attacks and summarize the transformation of
domain impersonation over time.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 31 doi: 10.2313/NET-2022-01-1_07

Type Example

Typosquatting facebook.com

Combosquatting example-site.com could be a
spoofing domain name for ex-
ample.com

Target Embedding difficult for an average user
to differentiate between
google.com.site.com and
site.google.com

IDN Homograph éxample.com trying to imper-
sonate example.com

TABLE 1: Examples for different spoofing domain names

3.1. Spoofing Domain Names

There are four common types of spoofing domain
names [2]: Target embedding, Unicode Homographs, Ty-
posquatting, and Combosquatting, whereas target embed-
ding is a category recently introduced by Roberts et al.
[2].

Typosquatting is the attempt to trick a user by includ-
ing any ’typos’ into a commonly used domain and rely on
a user mistaking it for the target domain. Alternatively,
attackers who own a Typosquatting domain just hope for
users to make a typo while writing a URL in a search bar
and access the malicious website by accident [7]–[9].

Target Embedding is a category, where the target
domain is embedded in the FQDN in the form of a
subdomain. To identify the actual domain, one must read
the URL from left to right; the domain name before the
TLD is the actual domain. It is important to note that
domain impersonation attacks do not include domains that
include a target domain owned by the actual domain or
cases where the target domain and actual domain are
identical. Additionally, Roberts et al. define subdomain
spoofing as "an umbrella term that includes any attempt
at domain impersonation where the target of imperson-
ation is primarily contained in one or more subdomains."
[2]. URL padding is another form of spoofing, mainly
used together with target embedding or combosquatting,
where the spoofing domain name is so long that only the
deceiving parts(consisting of the target domain) are visible
on a user’s screen [2].

Combosquatting is similar to target embedding. The
target domain is fully included in the FQDN, but contrary
to target embedding, the target domain is not a subdomain
in this case. [10]

Homographs Unicode Homographs describe the cre-
ation of a domain where the name of a commonly used
domain is manipulated by using homoglyphs of characters
that appear in the target domain. This attack can be highly
malicious since some characters are not only confusable
but indistinguishable for the human eye and only differ in
their Unicode. For the latter, there is no way for a user to
detect the attack just by checking the URL.

3.2. Browser Deception Attacks

Cache poisoning in general, is an attack where at-
tackers first request a domain resolution for the target
domain and then spoof the response, so the IP address

of a domain under their control is cached instead of the
respective IP address of the target domain [11]. Another
option for cache poisoning to succeed is for attackers to
perform a man-in-the-middle attack and eavesdrop on a
DNS request. Immediately after, attackers send a spoofed
response to the same server. Since they could eavesdrop on
the request, attackers know the transaction ID (TxID) en-
try they use in their spoofed response. This attack exploits
the fact that DNS messages are sent without encryption or
authentication [12]. Guessing the TxID would be possible,
too, but is much less likely to succeed [12]. What makes
cache poisoning different from fake certificates is that
its essence is to exploit the cache system, which is a
memory type. Hence, in case of a successful attack, the
consequences will last as long as the false information is
stored in the cache. Although it shows to be vulnerable,
DNS caching is an essential feature that improves the
performance of DNS [12].

Wrongly issued certificates The process of issuing
certificates has been proven to be insecure if not carried
out correctly [3]. There are different types of validation
methods in practice, and they are prone to On-Path attacks.
In general, a domain validation process consists of three
steps; the application for a certificate, the CA posing
a challenge and the applicant doing the challenge, and
lastly, the CA checking the challenge and given it is
completed, handing out a certificate. There are various
ways for a CA to pose a challenge, but we will focus
on the abstract process. The key point for an attacker is
to fake the successful completion of the challenge, e.g., a
DNS challenge where the applicant is supposed to publish
a token in the DNS zone file. When the CA checks for
completion using a DNS resolver, the attacker spoofs the
response tricking the CA into believing that the domain in
question is under their control. Note that this is different
from cache poisoning since the entries in the DNS resolver
cache are not changed. However, the CA is tricked into
believing that the IP address of the malicious domain is
mapped to the target domain when it is actually not. With a
spoofed response, the CA unrightfully issues a certificate
to the applicant, which the attacker can use for domain
impersonation(e.g., phishing attacks). [13]

3.3. How Did DI Transform over Time?

Although IDN was proposed in 1996 and Gabrilovich
and Gontmakher [1] already demonstrated a domain im-
personation attack in 2002, homographs were not con-
sidered a real threat until IDN started to be widely
used around the world with the number being as high
as 7.5 million registered IDNs by December 2017 [1].
Also, Hu et al. show that Chrome’s defense against IDN
homographs that were once 100% effective was not so
anymore in their study published two years later [14].
This implies that attackers continue to find new ways to
overcome existing security mechanisms. One incident that
shows that IDN homograph attacks are a severe issue
is the attack on the cryptocurrency exchange company
Binance [1]. When companies like Binance are attacked,
the consequences for the users and the company can be
severe since confidential information will be phished. In
the past few years, the possibilities of free certificate
issuances like Let’s Encrypt have emerged, which had an

Seminar IITM SS 21,
Network Architectures and Services, November 2021 32 doi: 10.2313/NET-2022-01-1_07

impact on the number of domain impersonation attacks,
too [13]. This is because free issuances give attackers
the chance to try attacks without financial barriers [2].
In addition to that, Let’s Encrypt uses a fully automated
procedure that does not require ownership of domains, but
”it suffices to demonstrate control over the domain’s name
server” [2].

4. Countermeasures

This section looks at different countermeasures and
their effectiveness.

4.1. Browser Employed Mechanisms

There are different mechanisms that browsers use to
protect users from malicious phishing websites. Browsers
show a lock icon when they could authenticate the website
they connected to. However, this is not effective in the
case of a spoofing domain name. The lock icon even
proves counterproductive since users think that the lock
icon ensures the website’s "trustworthiness". However,
when a user falls for a spoofing domain name attack,
e.g., target embedding, they click on a malicious link.
The browser authenticates that the user is connected to
the URL he requested and shows the lock icon. [2] For
the threat of IDN homographs, Browsers have introduced
defense policies like once a possible threat is detected,
the browser will display the Punycode version of the
domain name [14]. Punycode was designed to translate
IDN to ASCII compatible encoding, and in this case, it is
supposed to warn users of a possibly malicious domain
name. Nevertheless, studies have shown that after the
browser warns the user with the Punycode mechanism,
users are still prone to revisiting the spoofing domain
since they are not educated on why their browser uses
the Punycode [1]. Furthermore, Hu et al. [14] have shown
that all of the browsers they tested (which were the most
popular ones) have weaknesses in their mechanisms, and
the homographs that bypass those measures are still highly
deceiving, continuing to threaten users’ data privacy.

4.2. Certificate Authorities

DNSSEC is a layer of security that adds cryptographic
signatures to existing DNS records to provide authenticity
and data integrity [15]. DNSSEC is one of the most
effective options to prevent falsely issued certificates since
it protects against both off-path, where attackers do not
see the network traffic between the CA and the domain
owner’s servers but can spoof IP packets by claiming to
be the domain owner, and on-path attacks, where attackers
can eavesdrop on the network traffic and perform an
active man-in-the-middle attack [13]. If the domain is not
signed with DNSSEC, several best practices can protect
against off-path attacks, e.g., DNS Cookies. Protecting
against an on-path attack is not as easy. One solution
could be to send redundant queries so that the attacker
will not be able to spoof them all. [13] Schwittmann
et al. note that "CAs either do not employ all available
security measures or fail to implement them properly”
[13]. Although DNSSEC is an essential step in fighting

cache poisoning and avoiding falsely issued certificates, it
has not been widely employed because it adds a layer of
complexity [12]. Though DNSSEC is necessary to achieve
authenticity and data integrity, it is not entirely secure
and has further vulnerabilities that could be exploited.
DNSSEC does not provide confidentiality, and it is prone
to buffer overruns as well as DDoS attacks. In addition to
that, DNSSEC does not tolerate malicious server failures.
These are a few of the most critical vulnerabilities pointed
out by Ariyapperuma et al.. [15], [16]

4.3. Certificate Transparency

The introduction of CT logs brought many advantages
for users as well as domain owners. For instance, domain
owners now can easily check for certificates that were
issued without their knowledge and hence detect a fake
certificate domain impersonation attack, as discussed in
Section 3.2, before further harm can happen [17]. In addi-
tion to that, since there is a general move towards HTTPS,
all sites, including phishing sites, need certificates. Schei-
tle et al. [17] note that because of that, CT logs can be
used to detect phishing domain names They conclude this
after a pilot experiment where all valid domain names of a
popular company are removed from a list generated from
a CT log. As a result, there are many domain names left
which partly consist of the companies name and therefore
have a high potential of being phishing websites. On
the other hand, CT brings with them some risks, too.
The transparency allows attackers to scan for unknown
domains that would not have been publicly known if it
was not for the CT logs [18].

4.4. Preventing Cache Poisoning

Although DNS caching creates the opportunity for
cache poisoning attacks, it is an essential feature that im-
proves DNS performance. In case of cache poisoning, se-
curity toolbars and phishing filters like Phishtank1, where
users can check if a website was voted to be a phishing
website by other users if they suspect it to be one, will
not work. Even worse, they will confirm that the domain
in question is legitimate since the mapping from the target
IP to a malicious domain is cached in the resolver. Since
cache poisoning exploits the fact that neither DNS entries
nor DNS servers are authenticated, DNSSEC can be used
to fight off cache poisoning attacks. It will include an
authenticating signature for every valid message. The local
DNS server will not accept any responses from attackers
who cannot sign their spoofed response. [12]

4.5. ShamFinder

As a response to browsers’ insufficient countermea-
sures against IDN homographs, Suzuki et al. introduce
a countermeasure named ShamFinder. ShamFinder is
an automated framework to detect IDN homographs.
ShamFinder abstractly works as follows: It extracts IDN
homographs starting with a database of domain names
in the wild. Those domain names are then filtered by
the ones starting with the prefix "xn–", implying possible

1. https://www.phishtank.com/

Seminar IITM SS 21,
Network Architectures and Services, November 2021 33 doi: 10.2313/NET-2022-01-1_07

Figure 1: Contamination and overlap of character sets
where UC is a recommended mapping for confusable
characters [1]

homoglyphs. The next step is to find pairs of the extracted
IDNs and popular domain names with the same length
(meaning the same number of characters). Note that the
extracted IDNs, which possibly are homographs and the
list of popular domain names, are two separate sets of
data of which the latter can be a ranking list from the
Internet. For this purpose Suzuki et al. name Alexa Top
Sites2 as an example. The next step is an algorithm to
identify Homographs in the set of extracted IDNs that
forms the core of ShamFinder. For the pairs identified in
step 2, each character is compared. If two characters at the
same index are equivalent, then one proceeds to the next
character. If two characters are nonequivalent, then a list
of homoglyphs is checked to see whether those characters
are homoglyphs. If that is not the case, then the IDN is not
considered a homograph. If all characters are equivalent
or listed as homoglyphs, the domain will be labeled a
homograph. The list of homoglyphs mentioned here is
the second contribution of Suzuki et al. [1]. It is named
SimChar and was constructed as follows: First, each code
point is represented as a visual image. Then with a formula
as shown in equation 1, the number of different pixels
between two glyphs is computed. To summarize, for each
pixel, the difference between two images is computed
by subtraction. All differences are added up together in
the end to obtain a number representing the difference
between two glyphs.

∆ =

N−1∑

i=0

N−1∑

j=0

|I1(i, j)− I2(i, j)| (1)

Thus a delta equal to zero signifies that both glyphs
are visually identical. Now the question is what threshold
should be defined to mark the border between homoglyphs
and non-homoglyphs. The threshold chosen by Suzuki et
al. is 4. A further survey verifies that four is suited as
a threshold for what is perceived as confusable by the
human eye. The final homoglyph database consists of
SimChar combined with what Suzuki et al. call UC, a
confusable character database provided by Unicode Tech-
nical Standard #393.

First of all, the progress made by SimChar in terms of
identifying homoglyphs is noteworthy. As seen in Fig 1,
SimChar and UC’s intersection is relatively small, and it is
evident that SimChar has a significant contribution to the

2. https://www.alexa.com/topsites
3. http://unicode.org/reports/tr39/

number of possible homoglyphs. The major advantage of
ShamFinder is that it is an automated framework, meaning
it can be expanded whenever new homoglyphs need to
be added to the list. The survey done by the authors
with human participants verifies that SimChar is a set of
glyphs perceived as highly confusing. Therefore one can
conclude that the results of ShamFinder will be effective
in detecting homographs.

5. Conclusion and Future Work

To conclude, we can say that DI is a broad topic that
brings together vulnerabilities of DNS’ different parts.
Vulnerabilities in CAs certificate issuance, DNS servers,
browsers, and users’ behavior can give attackers op-
portunities to employ DI. One critical suggestions was
DNSSEC which is widely known but not implemented
by all CAs considered trustworthy. For users, proper ed-
ucation is indispensable and we aim to study the best
education approaches in the future. All in all, the issue of
DI remains a threat that attackers improve with time, and
therefore ever-developing security mechanisms, as well as
observation, is necessary. A secure use of IDN can only
exist if both sides, user behavior and DNS security, of the
problem are approached simultaneously.

References

[1] H. Suzuki, D. Chiba, Y. Yoneya, T. Mori, and S. Goto,
“Shamfinder: An automated framework for detecting idn homo-
graphs,” in Proceedings of the Internet Measurement Conference,
2019, pp. 449–462.

[2] R. Roberts, Y. Goldschlag, R. Walter, T. Chung, A. Mislove, and
D. Levin, “You are who you appear to be: A longitudinal study
of domain impersonation in tls certificates,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 2489–2504.

[3] Y. Zeng, T. Zang, Y. Zhang, X. Chen, and Y. Wang, “A comprehen-
sive measurement study of domain-squatting abuse,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC).
IEEE, 2019, pp. 1–6.

[4] C. Crane. (2020) What is a certificate authority (ca) and what
do they do? [Online]. Available: https://www.thesslstore.com/blog/
what-is-a-certificate-authority-ca-and-what-do-they-do/

[5] C. transparency. How ct works. [Online]. Available: https:
//certificate.transparency.dev/howctworks/

[6] techopedia. (2021) Top-level domain (tld). [Online]. Available:
https://www.techopedia.com/definition/1348/top-level-domain-tld

[7] J. Szurdi, B. Kocso, G. Cseh, J. Spring, M. Felegyhazi, and
C. Kanich, “The long “taile” of typosquatting domain names,”
in 23rd {USENIX} Security Symposium ({USENIX} Security 14),
2014, pp. 191–206.

[8] J. Spaulding, S. Upadhyaya, and A. Mohaisen, “The landscape of
domain name typosquatting: Techniques and countermeasures,” in
2016 11th International Conference on Availability, Reliability and
Security (ARES). IEEE, 2016, pp. 284–289.

[9] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis, “Seven
months’ worth of mistakes: A longitudinal study of typosquatting
abuse,” in Proceedings of the 22nd Network and Distributed System
Security Symposium (NDSS 2015). Internet Society, 2015.

[10] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez,
N. Pitropakis, N. Nikiforakis, and M. Antonakakis, “Hiding in
plain sight: A longitudinal study of combosquatting abuse,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 569–586.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 34 doi: 10.2313/NET-2022-01-1_07

[11] J. Trostle, B. Van Besien, and A. Pujari, “Protecting against dns
cache poisoning attacks,” in 2010 6th IEEE Workshop on Secure
Network Protocols. IEEE, 2010, pp. 25–30.

[12] R. Bassil, R. Hobeica, W. Itani, C. Ghali, A. Kayssi, and
A. Chehab, “Security analysis and solution for thwarting cache
poisoning attacks in the domain name system,” in 2012 19th
International Conference on Telecommunications (ICT). IEEE,
2012, pp. 1–6.

[13] L. Schwittmann, M. Wander, and T. Weis, “Domain impersonation
is feasible: A study of ca domain validation vulnerabilities,” in
2019 IEEE European Symposium on Security and Privacy (Eu-
roS&P). IEEE, 2019, pp. 544–559.

[14] H. Hu, S. T. Jan, Y. Wang, and G. Wang, “Assessing browser-level
defense against idn-based phishing,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[15] cloudfare. How dnssec works. [Online]. Available: https://www.
cloudflare.com/de-de/dns/dnssec/how-dnssec-works/

[16] S. Ariyapperuma and C. J. Mitchell, “Security vulnerabilities in dns
and dnssec,” in The Second International Conference on Availabil-
ity, Reliability and Security (ARES’07). IEEE, 2007, pp. 335–342.

[17] O. Gasser, B. Hof, M. Helm, M. Korczynski, R. Holz, and G. Carle,
“In log we trust: Revealing poor security practices with certifi-
cate transparency logs and internet measurements,” in Interna-
tional Conference on Passive and Active Network Measurement.
Springer, 2018, pp. 173–185.

[18] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle,
R. Holz, T. C. Schmidt, and M. Wählisch, “The rise of certificate
transparency and its implications on the internet ecosystem,” in
Proceedings of the Internet Measurement Conference 2018, 2018,
pp. 343–349.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 35 doi: 10.2313/NET-2022-01-1_07

Seminar IITM SS 21,
Network Architectures and Services, November 2021 36

Analysis of Wikipedia External Links

Onur Cakmak-Simic, Patrick Sattler, Johannes Zirngibl∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: onur.cakmak-simic@tum.de, sattler@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—Network scans are an inherent element of research
within the field of Computer Networks. The basis for these
scans is a list of targets, commonly referred to as hitlist.
There are readily available hitlists and active research on
how such lists can be generated.

In this paper, we extract domain names from external
link datasets provided by the Wikimedia Foundation and
use them as the source for generating a hitlist. We assess
the general structure of the extracted domains and compare
them to the Alexa Top 1M. We find that our list has no ap-
parent structural disadvantages. We also analyze the targets
for potential biases regarding their distribution over ASes,
prefixes, and IP addresses. Our results show that 52% of the
gathered IPv6 addresses are within 30 prefixes of AS13335-
CLOUDFLARENET and that the top 10 most occurring
ASes contain 45% of all IPv4 targets. We find that 33% of
the IPv4 and 42% IPv6 addresses map to more than one
domain. Around 5.8% of our domains resolve to the same
four IPv4 addresses belonging to AS53831-SQUARESPACE
and 3.3% of domains to four IPv6 addresses in AS15169-
GOOGLE.

Index Terms—Internet measurement, Internet hitlists

1. Introduction

Network scans and their resulting measurements are
important to many stakeholders in a network, from in-
dividual clients measuring their provided service, ISPs
trying to optimize their operational costs to researchers
measuring network characteristics, evaluating their find-
ings, or deploying algorithms on a larger scale. IPv4
scanning and the generation of hitlists date back to the 90s
[1,2]. Nowadays, tools like ZMap [3] and MASSCAN [4]
enable scanning the entire IPv4 address space in feasible
time. Although possible, a full scan might not be suitable.
Not all types of scans scale well to that size [5]. We might
need domains names, e.g., for TLS scans which generally
require domain names due to Server Name Indication, we
might have limited infrastructure or have a narrow target
group. With IPv6, complete scans of the address space are
not feasible [6], so hitlists are a necessity.

Depending on the source, the list of targets might be
biased. Detecting and eliminating these biases is not trivial
and a field of active research [7,8]. To ensure some form
of quality for the list of targets, Gasser et al. [7] suggest
gathering addresses that belong to individual hosts and
have an even distribution across ASes and prefixes. At
the very least, the potential for biases should be consid-

ered when conducting research, as a nonrepresentative or
skewed list might lead to wrong conclusions.

In this paper, we analyze a potential source for gen-
erating a hitlist. For that we extract domain names from
external links found in Wikipedia articles. According to
Wikipedia community guidelines [9], each article may
include an external link section listing the web presence
of entities relevant to the article. External links refer to
links from articles to web pages outside of Wikipedia.
Outline Section 2 briefly presents related work and termi-
nology used throughout this paper. Our methodology for
extracting the domains and resolving them to IP addresses
is outlined in Section 3. Section 4 covers some structural
properties of the extracted domain names. We inspect the
list of targets for potential biases towards ASes, prefixes,
and IP addresses in Section 5. Finally, Section 6 concludes
our paper and suggests possible future work.

2. Related Work and Background

There are many sources from which to generate
hitlists, including passive [6] and active measurements
[10], Certificate Transparency logs [11], and machine
learning [12]. As a result of continuous research, a con-
siderable amount of datasets, providing sources or targets,
have been accumulated. While some of these datasets
are restricted and proprietary [6,13], many are publicly
available [14,15]. Frequently used sources are top lists,
e.g., the Alexa Top 1 Million list [16] that rank web
domains by popularity. Scheitle et al. [17] and Pochat et al.
[18] found that some of these lists exhibit characteristics
that need to be accounted for prior to their use in research.
These include, but are not limited to, significant and
frequent churn, a nontransparent ranking mechanism, and
a weekend and clustering effect [5]. Attempts to address
some of these issues include using prefix top lists [19] or
incorporating multiple such lists [20].

To the best of our knowledge, Paul Hoffman’s [21]
work is the first to generate a hitlist using external links
from Wikipedia articles and to evaluate specific network
characteristics of the targets.
Background For the structural analysis in Section 4, we
use the notions of base domain and subdomain depth to
obtain insights into the depth and breadth of our domains
[17]. By base domain, we refer to the public suffix and
the first domain prefixing it, e.g., google.com. Each sub-
domain preceding the base domain adds a value of 1 to
the subdomain depth, e.g., www.support.google.com has
subdomain depth 2. For clarity, in this paper, the term bias

Seminar IITM SS 21,
Network Architectures and Services, November 2021 37 doi: 10.2313/NET-2022-01-1_08

TABLE 1: List structures. The SDx columns indicate the share of domains with subdomain depth x. SD0 represents
domains with no subdomain, i.e., a base domain [17]. In the third column, 1498 TLDs correspond to 100%. The given
numbers are rounded down to the nearest tenth decimal.

List Size TLDs SD0 SD1 SD2 SD>3 ∩Alexa

Joint 3.5M 57.8% 22.2% 70.3% 6.2% 0.8% 21.0%
de 1.2M 44.1% 17.7% 76.2% 5.7% 0.5% 8.5%
en 3.3M 57.6% 23.9% 68.7% 6.5% 0.7% 20.9%
fr 981.8K 41.7% 17.9% 74.2% 6.8% 0.8% 8.5%
ceb 6.2K 9.9% 17.6% 76.9% 5.1% 0.2% 0.3%
sv 243.7K 28.1% 16.5% 75.5% 6.3% 1.5% 3.4%
nl 317.3K 31.2% 14.0% 78.9% 5.3% 1.6% 3.6%
Alexa 690.9K 52.2% 85.4% 14.4% 0.1% 0.0% 100.0%

of a hitlist refers to its propensity to certain subsets in the
IP address space.

3. Methodology

The Wikimedia Foundation, the parent company of
Wikipedia, provides a wide range of data dumps. Among
them are SQL dumps that provide information about
the external links across all articles within a given
Wikipedia language edition. As of June 2021, there are
321 Wikipedia editions. For this paper, we used the six
largest editions, based on the number of articles. These
are the English, Cebuano, Swedish, German, French, and
Dutch Wikipedias. To create the lists of domain names we
performed the following steps:

• We pulled the external link SQL dump for each
language edition on May 04, 2021.

• We extracted the individual URLs from the dumps
and pruned those that were nonvalid URLs, had
bad syntax, used nonstandard ports, or contained
irrelevant protocols.

• We removed any unwanted prefix and suffix leav-
ing the base domain and subdomains.

• We deleted duplicate entries.

In addition, we created a Joint list by merging the in-
dividual lists, again removing duplicate entries. To resolve
the domains and collect IP addresses, we used MassDNS
[22] with an Unbound [23] resolver. We performed the
scan on May 17, 2021.

4. Structure

We check how many unique Top Level Domains
(TLDs) are used and the subdomain depth across the
domains in each list. In addition, we compute the inter-
section between our lists and the Alexa Top 1M, which
we retrieved May 26, 2021.

4.1. TLD Coverage

As of May 2021, IANA [24] reports the existence of
1498 valid TLDs. Table 1 shows the results for all lists.
The Joint and English list with 57.8% and 57.6% cover
almost the same number of TLDs, approximately 865.
There is a noticeable relation between the size of a list
and the amount of TLDs it contains. An exception is the

Alexa Top list which at almost half the size of the German
list includes 120 TLDs more. This might be attributed to
the larger share of base domains in the Alexa list leading
to a wider range of targets. The smallest list, Cebuano,
misses over 90% of TLDs. This is a consequence of its
small number of entries, although it is the second largest
Wikipedia edition. It is the smallest list because of an
unexpectedly large number of duplicate entries in the SQL
dump, which we removed during the list’s creation.

TABLE 2: Top 5 TLDs by occurrence. Values are per-
centages of the number of domains in the respective list.

Lists

TLD de en fr ceb sv nl

com 25.4 48.9 38.2 44.5 32.0 26.6
org 7.7 14.2 11.2 11.9 9.3 7.6
de 32.4 2.4 3.6 1.5 6.4 6.8
net 3.3 4.2 4.3 4.0 3.5 3.1
fr 1.6 0.7 12.2 2.9 0.8 1.5

Table 2 lists the five most frequently occurring TLDs
across the language-specific lists. Three of the most com-
monly used TLDs on the internet, com, net, and org are
present. The entries de and fr are due to an unsurprising
bias of the German and French list, the second and third
largest lists respectively, towards these TLDs. Around
420 K domains in the German list have de as their TLD
and around 118 K entries in the French list have TLD fr.

We would like to note that the extracted URLs con-
tained thousands of invalid TLDs, which was a point of
interest in previous research [17] when analyzing such
lists. Due to the human component in adding external
links to articles, this is to be expected and not further
elaborated on in this paper.

4.2. Subdomain Depth

Looking at the subdomain depths in Table 1, we
notice a significant discrepancy between the Wikipedia
lists and the Alexa Top list. With 590 K entries, the Alexa
list almost exclusively consists of base domains, whereas
our lists comprise around 14% to 23% base domains
each. Conversely, up to 78% percent of domains in the
Wikipedia lists have subdomain depth 1, compared to
Alexa’s 14%. Worth noting is that 60-70% of these do-
mains with subdomain depth 1 have the www. prefix, which

Seminar IITM SS 21,
Network Architectures and Services, November 2021 38 doi: 10.2313/NET-2022-01-1_08

TABLE 3: Top 10 ASes by the number of contained domains from the Joint list.

IPv4 IPv6

AS Domains Addresses Prefixes AS Domains Addresses Prefixes

AS13335 - CLOUDFLARENET 442K 80K 175 AS13335 - CLOUDFLARENET 399K 75K 30
AS16509 - AMAZON-02 209K 49K 1.5K AS6724 - STRATO 49K 473 2
AS53831 - SQUARESPACE 208K 27 3 AS8560 - IONOS-AS 48K 2.8K 3
AS15169 - GOOGLE 174K 25K 266 AS16509 - AMAZON-02 29K 15K 143
AS58182 - wix_com 147K 25 4 AS8972 - Host Europe 21K 2.8K 2
AS14618 - AMAZON-AES 140K 24K 108 AS51468 - ONECOM 20K 20K 1
AS16276 - OVH 137K 37K 87 AS15169 - GOOGLE 20K 222 14
AS8560 - IONOS-AS 118K 10K 34 AS20773 - GODADDY 13K 10K 1
AS46606 - UNIFIEDLAYER-AS-1 90K 27K 129 AS16276 - OVH 12K 1.9K 5
AS26496 - GO-DADDY-COM 26K 9K 285 AS54113 - Fastly 10K 219 16

does not provide us with any more interesting targets than
base domains. Our lists do contain a considerable amount
of domains with subdomain depth 2 or greater, leading to
potentially interesting targets. In the Joint list, there are
≈210 K domains with subdomain depth 2 and ≈28 K with
a subdomain depth larger than 3. The Alexa Top list has
740 and 35 such domains, respectively. This suggests that
our Joint list covers domains beyond an entity’s main web
presence.

4.3. Intersection with the Alexa Top 1M

The intersection between hitlists is an important mea-
sure and was studied in previous research [17] as a large
overlap may indicate that potential biases and shortcom-
ings in one list are also present in the other. Of the
approximately 3.5 M domains in our Joint list, about 150 K
can be found on the Alexa Top list. Most of this overlap
comes from entries in the English list. All other lists have
intersections consistently below 10% and in total only
contribute 7K domains to the overlap of the Joint list. This
indicates that our lists are a more diverse source for the
generation of a hitlist that goes beyond the most popular
domains. The generally low overlap might be explained
by the fact that the broad diversity of Wikipedia articles
results in many external links pointing to niche, regional
and unknown domains.

5. Biases

In this section, we analyze our target address for
potential biases by inspecting their distribution over ASes,
prefixes, and IP addresses. We conclude the section by
checking IPv6 adoption and the use of privacy extensions
across our targets. The following analysis is based on the
addresses resolved from the Joint list only.

5.1. AS and Prefix Distribution

Table 3 shows the top 10 ASes most domains within
our list belong to. For both IPv4 and IPv6, CLOUD-
FLARENET is in first place. About 11% of all domains
resolved to an IPv4 address and 52% of IPv6 addresses
resolved to are within AS13335-CLOUDFLARENET and
175 and 30 of its prefixes respectively. Six of the
10 ASes are found on both sides, while SQUARES-
PACE, wix_com, AMAZON-AES, and UNIFIEDLAYER-
AS drop out of the top 10 when considering IPv6 ad-
dresses. With STRATO, IONOS-AS, Host Europe, and

GODADDY, about 130 K (17.1%) of all IPv6 domains are
located in a German AS and within 8 of their prefixes.

The domains are distributed over 19976 ASes (IPv4)
and 2304 ASes (IPv6), yet the top 10 ASes contain 45%
and 80% of them respectively. These results carry over
to the approximately 69 K IPv4 and 3.4K IPv6 prefixes
covered in total. All domains in the top 10 ASes are
within 2591 (3.7%) and 217 (6.2%) of all covered pre-
fixes. Figure 1 provides a graphical representation of these
results. Beyond the top 10, we find that the top 100 ASes
cover 77% and the top 250 approximately 85% of all IPv4
domains. For IPv6, it is more significant as the respective
number of top ASes contain 96% and 97% of all domains.

10 100 250
ASes

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 D

om
ai

ns
 in

 To
p

AS
es

IPv4
IPv6

Figure 1: CDF showing address distribution over top
ASes.

5.2. IP Addresses

To identify a possible bias towards a small set of IP
addresses, we check how many domains are resolved to
the same address. In total, we gathered 887 K unique IPv4
and 175 K unique IPv6 addresses.
IPv4 Table 4 shows the top IPv4 addresses appearing
the most in our hitlist. Given the purpose of external
links, it is no surprise that most addresses belong to well-
known web hosters like SQAURESPACE and Wix.com.
There are no significant differences among the Top 8, with
approximately 50 K occurrences each. In total, around
450 K (12.8%) domains are resolved to these addresses.
Figure 2 shows the distribution over the top 5000 IPv4
addresses. We see that the top 100 addresses account for
22%, the top 1000 for 32%, and the top 4000 for 39% of
all domains. After the top ≈300 K addresses, we have a
one-to-one mapping between domain and address.
IPv6 In Table 5, the top 10 most occurring IPv6 addresses
are listed. Structurally, the table is similar to that of the
IPv4 addresses. The top 5 addresses are resolved to from

Seminar IITM SS 21,
Network Architectures and Services, November 2021 39 doi: 10.2313/NET-2022-01-1_08

TABLE 4: Top 10 most frequently occurring IPv4 ad-
dresses in the target list.

Address # AS

198.185.159.144 53 K SQUARESPACE
198.185.159.145 50 K SQUARESPACE
198.49.23.145 50 K SQUARESPACE
198.49.23.144 50 K SQUARESPACE
185.230.63.171 49 K wix_com
185.230.63.107 49 K wix_com
185.230.63.186 49 K wix_com
184.168.131.241 47 K GO-DADDY-COM-LLC
3.223.115.185 29 K AMAZON-AES
192.0.78.24 23 K AUTOMATTIC

around 4800 domains each where the top 4 belong to
AS15169-GOOGLE. In total, the top 10 addresses cover
around 39 K (5.2%) of all domains. Looking again at
Figure 2, we find that the distribution over IPv6 addresses
follows a similar slope to that of the IPv4 addresses.

TABLE 5: Top 10 most frequently occurring IPv6 ad-
dresses in the target list.

Address # AS

2001:4860:4802:32::15 4886 GOOGLE
2001:4860:4802:36::15 4842 GOOGLE
2001:4860:4802:34::15 4840 GOOGLE
2001:4860:4802:38::15 4837 GOOGLE
2a05:d014:9da:8c10:306e:3e07:a16f:a552 4650 AMAZON-02
2a01:238:20a:202:1086:: 3599 STRATO
2a01:238:20a:202:1162:: 3218 STRATO
2003:2:2:15:80:150:6:143 2840 DTAG
2606:4700:90:0:b518:199c:8a1f:d33b 2736 CLOUDFLARENET
2a01:238:20a:202:1064:: 2393 STRATO

The top 100, 1000, and 4000 IPv6 addresses account
for 14%, 25%, and 29% of all domains respectively.
Here we have a one-to-one mapping between domain and
address after 74 K addresses. Interestingly another German
AS, DTAG, is the only one appearing in either address
table, which is not part of Table 3.

100 1000 2500 4000
IP Addresses

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 D

om
ai

ns
 re

so
lv

ed
 to

 To
p

IP
 A

dd
re

ss
es

IPv4
IPv6

Figure 2: CDF showing domain distribution over top IP
addresses.

IPv6 adoption IPv6 adoption across the internet was a
network characteristic of interest in previous research [25].
Of our ≈3.5 M domains, around 750 K could be resolved
to an IPv6 address. This represents an adoption of 21.7%.
We take the native IPv6 traffic google receives [26] as a
reference for the adoption on the internet, which is 31%
as of June 02, 2021. Our list falls well below that. This
again might be because of the diverse, possibly niche,

and regional nature of external links. Additionally, we
determine how many domains can be resolved to an IPv6
address, whereas Google passively measures user traffic.

0 10 20 30 40
Number of bits set to 1 in the host identifier

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

Fra
cti

on
 of

 re
so

lve
d h

os
t id

en
tifi

ers

(31.5, 15.75)

Figure 3: Bit distribution over IPv6 host identifiers.

Privacy Extensions RFC 4941 introduced privacy exten-
sions to reduce the traceability of MAC addresses due
to the use of Stateless Address Autoconfiguration. Using
privacy extensions, the interface identifier, i.e., the last
64 bits, are replaced by random bits. An approximation
for the sum of these single bit distributions is the normal
distribution N (31.5, 15.75) [6]. We analyzed the interface
identifiers of our IPv6 addresses. The distribution for the
sum over the bits is shown in Figure 3. We see that our
sample of host identifiers does not match the normal dis-
tribution. This shows that most of our targets are not using
privacy extensions. Considering that most of our targets
are presumably web servers having no need to mask their
host identifiers for the sake of reducing traceability, this
is not too surprising.

6. Conclusion and Future Work

In this work, we analyzed external links from
Wikipedia articles as a source for creating a hitlist. We
found that our Joint list has similar TLD coverage and
higher average subdomain depth than the Alexa Top list.
Around 21% of the domains in the Alexa list are also
present in the Joint list. When evaluated for biases, our
hitlist showed a significant propensity towards a small
number of ASes and prefixes. In addition, a large portion
of domains are resolved to a small set of IPv4 and IPv6
addresses. We have seen that the IPv6 adoption of our
targets is below the general adoption and that most of
them do not use privacy extensions.

We note that this work evaluated the hitlist in isolation
without comparing it with existing alternatives. This could
be addressed in future work to determine the relative value
of this method. An attempt to eliminate found biases
might increase the quality of the hitlist. Other potential
aspects for future work include assessing possibilities to
manipulate external links, monitoring the change of the
domain names over a longer period of time, considering
further network characteristics, checking for additional
biases, and incorporating additional Wikipedia language
editions.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 40 doi: 10.2313/NET-2022-01-1_08

References

[1] J.-J. Pansiot and D. Grad, “On Routes and Multicast Trees in the
Internet,” SIGCOMM Comput. Commun. Rev., vol. 28, no. 1, p.
41–50, Jan. 1998.

[2] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map
discovery,” in Proceedings IEEE INFOCOM 2000. Conference
on Computer Communications. Nineteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), vol. 3, 2000, pp. 1371–1380 vol.3.

[3] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast
Internet-wide Scanning and Its Security Applications,” in 22nd
USENIX Security Symposium (USENIX Security 13). Washington,
D.C.: USENIX Association, Aug. 2013, pp. 605–620.

[4] R. Graham, “MASSCAN: Mass IP port scanner,” Available at
https://github.com/robertdavidgraham/masscan, [Online; accessed
01-June-2021].

[5] W. Rweyemamu, T. Lauinger, C. Wilson, W. Robertson, and
E. Kirda, “Clustering and the Weekend Effect: Recommendations
for the Use of Top Domain Lists in Security Research,” in Passive
and Active Measurement, D. Choffnes and M. Barcellos, Eds.
Cham: Springer International Publishing, 2019, pp. 161–177.

[6] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning the
IPv6 Internet: Towards a Comprehensive Hitlist,” in In Proceedings
of the Traffic Monitoring and Analysis Workshop, 2016.

[7] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
Strowes, L. Hendriks, and G. Carle, “Clusters in the Expanse:
Understanding and Unbiasing IPv6 Hitlists,” in Proceedings of
the Internet Measurement Conference 2018, ser. IMC ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
364–378.

[8] A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson, “Tar-
get Generation for Internet-Wide IPv6 Scanning,” in Proceedings
of the 2017 Internet Measurement Conference, ser. IMC ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
242–253.

[9] Wikipedia, “Wikipedia:External links,” Available at https://en.
wikipedia.org/wiki/Wikipedia:External_links, 2021, [Online; ac-
cessed 24-July-2021].

[10] P. van Dijk, “Finding v6 hosts by efficiently
mapping ip6.arpa,” Available at https://web.archive.
org/web/20161121215042/http://7bits.nl/blog/posts/
finding-v6-hosts-by-efficiently-mapping-ip6-arpa, [Online;
accessed 01-June-2021].

[11] F. Marquardt and C. Schmidt, “Don’t Stop at the Top: Using
Certificate Transparency Logs to Extend Domain Lists for Web
Security Studies,” in 2020 IEEE 45th Conference on Local Com-
puter Networks (LCN), 2020, pp. 409–412.

[12] P. Foremski, D. Plonka, and A. Berger, “Entropy/IP: Uncovering
Structure in IPv6 Addresses,” in Proceedings of the 2016 Internet
Measurement Conference, ser. IMC ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 167–181.

[13] D. Plonka and A. Berger, “Temporal and Spatial Classification
of Active IPv6 Addresses,” in Proceedings of the 2015 Internet
Measurement Conference, ser. IMC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 509–522.

[14] R. P. Sonar, “Forwards DNS Data,” Available at https://opendata.
rapid7.com/sonar.fdns_v2/, [Online; accessed 27-May-2021].

[15] R. NCC, “IPMap,” Available at https://ftp.ripe.net/ripe/ipmap/,
[Online; accessed 27-May-2021].

[16] Alexa, “Top 1M sites,” Available at https://www.alexa.com/
topsites, [Online; accessed 18-May-2021] http://s3.dualstack.
us-east-1.amazonaws.com/alexa-static/top-1m.csv.zip.

[17] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmermann,
S. D. Strowes, and N. Vallina-Rodriguez, “A Long Way to the
Top: Significance, Structure, and Stability of Internet Top Lists,”
in Proceedings of the Internet Measurement Conference 2018, ser.
IMC ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 478–493.

[18] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Kor-
czyński, and W. Joosen, “Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation,” in Proceedings of the
26th Annual Network and Distributed System Security Symposium,
ser. NDSS 2019, 2019.

[19] J. Naab, P. Sattler, J. Jelten, O. Gasser, and G. Carle, “Prefix top
lists: Gaining insights with prefixes from domain-based top lists
on dns deployment,” in Proceedings of the Internet Measurement
Conference, ser. IMC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 351–357.

[20] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Anton-
akakis, “A Lustrum of Malware Network Communication: Evo-
lution and Insights,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 788–804.

[21] P. Hoffman, “Collecting Typical Domain Names for Web
Servers,” Available at https://www.icann.org/en/system/files/files/
octo-023-24feb21-en.pdf, 2021, [Online; accessed 02-May-2021].

[22] T. U. of Munich, “MassDNS,” Available at https://github.com/
blechschmidt/massdns, 2021, [Online; accessed 09-June-2021].

[23] N. Labs, “Unbound,” Available at https://github.com/NLnetLabs/
unbound, 2021, [Online; accessed 09-June-2021].

[24] IANA, “TLD Directory,” Available at https://data.iana.org/TLD/
tlds-alpha-by-domain.txt, 2021, [Online; accessed 01-June-2021].

[25] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and
M. Bailey, “Measuring IPv6 Adoption,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 87–98.

[26] Google, “IPv6 Statistics,” Available at https://www.google.com/
intl/en/ipv6/statistics.html, 2021, [Online; accessed 01-June-2021].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 41 doi: 10.2313/NET-2022-01-1_08

Seminar IITM SS 21,
Network Architectures and Services, November 2021 42

Survey on SR-IOV performance

Maximilian Fischer, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: maximilian.fischer@in.tum.de, wiedner@net.in.tum.de

Abstract—Scalable, high performance VM networking is be-
coming increasingly important. Paravirtualized solutions like
VIRTIO are not up to the task, since the overhead in latency
and bandwidth is too high. Single-Root I/O Virtualization
(SR-IOV) is a technology which eliminates the need to em-
ulate NICs and could exceed VIRTIO and similar solutions
in terms of performance. In this paper we give an overview
over the performance of SR-IOV with ethernet, focusing on
latency since it is especially important for applications like
network function virtualization. We look at the current status
of SR-IOV, as well as some optimizations that can be applied
and how they actually impact performance and particularly
latency. We discover that latency has not been the focus
of recent research, but rather bandwidth. Additionally, the
scalability of stock SR-IOV and of the shown optimizations
is not examined enough, especially with regard to latency.
We come to the conclusion that further research is necessary.

Index Terms—SR-IOV, network function virtualzation, mea-
surement, hight-speed networks, ethernet networks

1. Introduction

As more and more services become virtualized and con-
tainerized, high performance networking becomes increas-
ingly important. An application where this is especially
critical are virtual network functions (VNF). Here the
network functions which would normally be handled by
separate devices, like a firewall, router or DNS resolver
are instead put into virtual machines (VMs), with usually
no specialized hardware. These are applications which all
other clients in the network depend on, since, depending
on the VNF, either traffic goes through the VM, e.g. a
router, or future traffic depends on it, e.g. a DNS resolver.
Low latency and high bandwidth are a must, since VNFs
can act as a network-wide bottleneck. Since multiple
VNFs can run on a single host, good scalability is also
paramount, otherwise a major advantage of VNFs is lost.

At the moment, VM networking is implemented with
different systems, depending on the hypervisor used.
When using the Kernel-based Virtual Machine (KVM), a
very popular paravirtualization standard is VIRTIO. The
hypervisor Xen also has capabilities to use paravitualized
network interfaces [1]. Unfortunately, neither KVM nor
Xen can provide performance near that of native network-
ing. Bandwidth is severely limited by the number of inter-
rupts the CPU can handle. Latency is impacted negatively
by tx batching, a technique where the hypervisor doesn’t

inform the VM about every packet that arrives, but rather
does so in batches, thus reducing the number of context
changes. When turning off tx batching, latency benefits but
bandwidth suffers due to the number of interrupts [2] [3].
A technology which could solve all of this is Single Root
I/O Virtualization (SR-IOV). An SR-IOV capable network
interface controller (NIC) can present itself as multiple
virtual PCIe devices. These devices are split into virtual
functions (VF) and one physical function (PF). The VFs
are passed through to the VMs and the PF is for the host.
The PF has the capability to configure the NIC, how many
VFs it has, the routing and much more, depending on the
NIC [2]. In theory, this greatly improves performance,
since the hypervisor doesn’t have to emulate or paravi-
tualize the NIC. There are a lot of works discussing the
praxis, unfortunately most of them focus on bandwidth.
If latency is ever talked about it is mostly in the context
of InfiniBand. That is because latency is very important
for most applications using InfiniBand, like the message
passing interface (MPI) [4].

The goal of this paper is to give an overview of the
current state of the performance of SR-IOV networking
when using ethernet, with a focus on latency. First we
will talk about the current, unoptimized state of SR-IOV.
Afterwards we will show some optimizations which can
be applied and how they actually impact the performance.
Lastly we will show what conclusions we can draw from
this.

2. Current Status

There are several works analysing and discussing the
performance of SR-IOV as is, without any optimizations.
In this section we take a look at some of them.

A general performance overview is given by Liu [2]
with a 10 GbE connection between two servers. The half-
roundtrip latency is shown in Figure 1. The 7 µs difference
between SR-IOV and native is attributed to the interrupt
virtualization needed for SR-IOV. The very high latency of
VIRTIO can be traced back in part to tx batching. In this
approach the hypervisor, while writing incoming packets
into the buffer of the VM, does not instantly inform the
VM about them. Instead the VM is only interrupted every
few packets, which leads to a dramatically lower number
of interrupts. When disabling the tx batching of the VIR-
TIO network interface, latency improves it to around 37 µs
while negatively impacting performance under high tx
load due to more interrupts. Figure 2 shows the bandwidth
compared to the CPU usage when receving. For large
messages, the performance of SR-IOV and native is almost

Seminar IITM SS 21,
Network Architectures and Services, November 2021 43 doi: 10.2313/NET-2022-01-1_09

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 131 256 512 1024 2048 4096
Message Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

SRIOV
Native (no-iommu)
VIRTIO
VIRTIO (no Tx batching)

Figure 2: Latency

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%

C
PU

 U
til

iz
at

io
n

SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 3: Rx Bandwidth

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%

C
PU

 U
til

iz
at

io
n

SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 4: Tx Bandwidth

0

200

400

600

800

1000

1200

1400

1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

M
em

or
y

A
cc

es
s

SRIOV Rx
VIRTIO Rx

Figure 5: Memory Access

0

20000

40000

60000

80000

100000

120000

140000

160000

VM Exits Host IRQs Guest IRQs

N
um

be
r o

f E
ve

nt
s

pe
r S

ec
on

d
SRIOV

VIRTIO

Figure 6: VM Exits and IRQs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SRIOV 32K VIRTIO 32K SRIOV 1K VIRTIO 1K

Pe
rc

en
ta

ge
 o

f C
PU

other
irq
vxge
qemu
copy
guest

Figure 7: Rx Cost Breakdowns

Neterion driver in the guest VM uses NAPI to reduce the
number of interrupts. A similar thing happens for VIRTIO
in its Neterion driver in the host. As can be seen in Figure 6,
due to NAPI, the numbers of host interrupts for both SR-
IOV and VIRTIO (around 50000 and 40000) are much less
than the number of frames received. Although the number of
host interrupts for SR-IOV is comparable to that for VIRTIO,
almost every host interrupt in SR-IOV results in a guest
interrupt while only a fraction of those in VIRTIO results
in guest interrupts, which leads to the fact that VIRTIO has
much fewer guest IRQs (and thus much fewer VM exits).
The main reason for this is that the Neterion driver imple-
ments a Linux network feature called general receive offload
(GRO) [30]. GRO is a optimization which is similar to GSO
except that it is implemented in software and used for Rx.
With GSO, Linux network drivers can combine multiple
frames in the same TCP stream into a large packet and pass it
to the upper layer or through the bridge. As a result, the virtio
guest network driver can operate on large packets instead
of standard Ethernet frames. The ability to receive large
GRO packets directly, together with that fact that the virtio
guest network driver also supports NAPI, gives VIRTIO the
advantage of having much fewer guest interrupts (and thus
much fewer VM exits) during network Rx processing. In
other words, a well-architected software-based approach can

process and combine networking packets in the host and let
the guest VMs handle them in batches to reduce the number
of VM exits and improve network processing efficiency.

To get more insight into how CPU cycles are spent during
the Rx and Tx processes, we have used OProfile to obtain
breakdowns of CPU cycles (normalized to percentage) and
show the results in Figures 7 and 8. We classify the CPU
cycles into 6 categories: guest (guest VM processing), copy
(host memory copy), qemu (KVM user space emulation
code), vxge (host Neterion driver processing), irq (host ker-
nel IRQ emulation and injection), and other. We can see
that copy, guest and vxge are significant costs for VIRTIO
but almost negligible for SR-IOV. On the other hand, vxge
and irq costs are non-trivial for SR-IOV but only a very
small part for VIRTIO. Overall, the majority of the network
processing for SR-IOV is done in the guest VM instead of
the host, while the opposite is true for VIRTIO.

In Figure 9, we show the aggregate Rx bandwidth for 32
KB messages as the number of VM increases. We can see
that for SR-IOV, the aggregate bandwidth does not increase
for multiple VMs because it is already close to line rate for
a single VM. In fact, the contention among the VMs leads to
slight decreases in bandwidth. For VIRTIO, using multiple
VMs does improve bandwidth from 5.89 Gbps to 8.35 Gbps
as more CPUs are involved in the network processing.

6

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 24,2020 at 13:55:05 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Latency [2]

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 131 256 512 1024 2048 4096
Message Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

SRIOV
Native (no-iommu)
VIRTIO
VIRTIO (no Tx batching)

Figure 2: Latency

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%
C

PU
 U

til
iz

at
io

n
SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 3: Rx Bandwidth

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%

C
PU

 U
til

iz
at

io
n

SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 4: Tx Bandwidth

0

200

400

600

800

1000

1200

1400

1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

M
em

or
y

A
cc

es
s

SRIOV Rx
VIRTIO Rx

Figure 5: Memory Access

0

20000

40000

60000

80000

100000

120000

140000

160000

VM Exits Host IRQs Guest IRQs

N
um

be
r o

f E
ve

nt
s

pe
r S

ec
on

d

SRIOV

VIRTIO

Figure 6: VM Exits and IRQs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SRIOV 32K VIRTIO 32K SRIOV 1K VIRTIO 1K

Pe
rc

en
ta

ge
 o

f C
PU

other
irq
vxge
qemu
copy
guest

Figure 7: Rx Cost Breakdowns

Neterion driver in the guest VM uses NAPI to reduce the
number of interrupts. A similar thing happens for VIRTIO
in its Neterion driver in the host. As can be seen in Figure 6,
due to NAPI, the numbers of host interrupts for both SR-
IOV and VIRTIO (around 50000 and 40000) are much less
than the number of frames received. Although the number of
host interrupts for SR-IOV is comparable to that for VIRTIO,
almost every host interrupt in SR-IOV results in a guest
interrupt while only a fraction of those in VIRTIO results
in guest interrupts, which leads to the fact that VIRTIO has
much fewer guest IRQs (and thus much fewer VM exits).
The main reason for this is that the Neterion driver imple-
ments a Linux network feature called general receive offload
(GRO) [30]. GRO is a optimization which is similar to GSO
except that it is implemented in software and used for Rx.
With GSO, Linux network drivers can combine multiple
frames in the same TCP stream into a large packet and pass it
to the upper layer or through the bridge. As a result, the virtio
guest network driver can operate on large packets instead
of standard Ethernet frames. The ability to receive large
GRO packets directly, together with that fact that the virtio
guest network driver also supports NAPI, gives VIRTIO the
advantage of having much fewer guest interrupts (and thus
much fewer VM exits) during network Rx processing. In
other words, a well-architected software-based approach can

process and combine networking packets in the host and let
the guest VMs handle them in batches to reduce the number
of VM exits and improve network processing efficiency.

To get more insight into how CPU cycles are spent during
the Rx and Tx processes, we have used OProfile to obtain
breakdowns of CPU cycles (normalized to percentage) and
show the results in Figures 7 and 8. We classify the CPU
cycles into 6 categories: guest (guest VM processing), copy
(host memory copy), qemu (KVM user space emulation
code), vxge (host Neterion driver processing), irq (host ker-
nel IRQ emulation and injection), and other. We can see
that copy, guest and vxge are significant costs for VIRTIO
but almost negligible for SR-IOV. On the other hand, vxge
and irq costs are non-trivial for SR-IOV but only a very
small part for VIRTIO. Overall, the majority of the network
processing for SR-IOV is done in the guest VM instead of
the host, while the opposite is true for VIRTIO.

In Figure 9, we show the aggregate Rx bandwidth for 32
KB messages as the number of VM increases. We can see
that for SR-IOV, the aggregate bandwidth does not increase
for multiple VMs because it is already close to line rate for
a single VM. In fact, the contention among the VMs leads to
slight decreases in bandwidth. For VIRTIO, using multiple
VMs does improve bandwidth from 5.89 Gbps to 8.35 Gbps
as more CPUs are involved in the network processing.

6

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 24,2020 at 13:55:05 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Rx bandwidth compared against CPU usage [2]

the same, at around 9.1 Gbit/s, while VIRTIO reaches
its maximum at 5.9 Gbit/s, with a theoretical maximum
of 10 Gbit/s. The CPU usage for SR-IOV, however, is
significantly larger for messages bigger than 4096 B, at
200 % compared to 140 % for native or VIRTIO. This
is important to note, since the CPU is often the bottle-
neck when using SR-IOV and also the point where a lot
of papers discussed later begin their optimizations. The
performance when receiving translates more or less to
transmitting, except that native and SR-IOV already start
to diverge for messages smaller than 8192 B. Also, the
CPU usage of 110 % is closer to the VIRTIO CPU usage
of 140 % than to the native of 60 %. A category in which
VIRTIO pulls ahead of SR-IOV is VM exits and interrupt
requests. The number of SR-IOV VM exits exceeds that
of VIRTIOs 18000 by nearly eightfold [2].

Lockwood et al. [4] analyse the MPI performance of
SR-IOV 10 Gbit/s ethernet on a VM compared to that of
an VM with network virtualization, native 10 Gbit/s ether-
net, SR-IOV InfiniBand on a VM and native InfiniBand.
Since we focus on ethernet in this paper, InfiniBand is not
discussed. The tests using 10 Gbit/s ethernet on a VM are
carried out using Amazon Web Services and with no other
VM running on the host. The benchmarks reveal that, as
expected, native performs better than SR-IOV, which in
turn performs better than fully virtualized networking. La-
tency stays about the same for message sizes of ≤1 KiB,
with SR-IOV having about 40 % lower latency than fully
virtualized networking. In numbers this means that fully
virtualized networking has 65 µs of latency while SR-IOV

has 40 µs. Unfortunately, this is still about two times as
high as native. For larger messages the difference in ping
between SR-IOV and fully virtualized starts to decrease,
while the absolute latency of all three variants gets bigger.
At the largest tested message size of 4 MB SR-IOV still
performs 12 % better than without SR-IOV. SR-IOV also
performs better when looking at latency variation, due to
the fully virtualized networking being influenced by other
tasks on the CPU. In numbers, that means SR-IOV has
three to four times less latency variation. The bandwidth
analysis shows that native provides nearly 6.4 Gbit/s for
unidirectional and the full 10 Gbit/s for bidirectional traf-
fic. The bandwidth of SR-IOV and fully virtualized never
gets above about 3.2 Gbit/s for unidirectional, and 4 Gbit/s
for bidirectional traffic. These differences to the previous
paper are likely to the difference in benchmarks being
used, as well as the usage of MPI in this paper [4].

The performance of SR-IOV is compared against that
of Open vSwitch Data Plan Development Kit (OVS-
DPDK) and Fast Data input/output Vector Packet Process-
ing (FD.io VPP) for use with VNFs by Pitaev et al. [5].
The theoretical maximum interface speed is 20 Gbit/s.
When the VNFs are under a light load, just doing
IPv4 Forwarding, SR-IOV clearly pulls ahead. While the
throughput of SR-IOV scales nearly linearly with every
additional VNF added, up to about 19 Gbit/s, the through-
put of FD.io VPP and OVS-DPDK stops increasing at
two and three VNFs respectively, at about 12 Gbit/s to
16 Gbit/s. When using packet sizes of 128 B instead of
the previous IMIX, the performance difference becomes
even clearer, though the general development is the same.
Loading the VNFs with NAT, Firewall, QoS and DPI and
IMIX or 1500 B packet sizes yields much more interesting
results. SR-IOV scales nearly linearly to the maximum
bandwidth with both IMIX and 1500 B packets, while
OVS-DPDK does not reach it at all and FD.io VPP only
for 1500 B packets [5].

Xu and Davda [6] talk about SRVM, which provides
VM live migration support for SR-IOV to the VMware
ESXi hypervisor. Comparing the performance of SR-IOV
to that of the VMXNET3 driver, SR-IOV performs, as ex-
pected, better. All the tests were conducted with a 10 GbE
NIC. The average latency of the system normalized to
the native latency is 113 % for SR-IOV and 207.7 % for
VMXNET3. The minimum and maximum latency of SR-
IOV is even better than native, at 95.2 % and 66.2 %, while
that of VMXNET3 is 185 % and 636.7 % respectively.
As expected, the throughput of SR-IOV is nearly on par
with native at 99.8 % for packet sizes of 256 B, 512 B
and 1024 B, whereas VMXNET3 is at 16.2 %, 33.5 % and
49.7 % [6].

Hwang et al. [7] present NetVM, a tool which com-
petes with SR-IOV and makes use of the data plane
development kit and KVM. It consists of three parts,
NetVM manager, NetVM core engine and NetLib. NetVM
manager is the interface to the hypervisor, receiving events
from it. It then notifies NetVM core engine which actually
implements those events. NetVM core engine is also re-
sponsible for receiving packets and forwards it to the VM
via shared memory over an emulated PCI device. NetLib
provides the interface for the user application in the VM.
The test setup consists of two servers with a 10 GbE
connection between them. When comparing the roundtrip

Seminar IITM SS 21,
Network Architectures and Services, November 2021 44 doi: 10.2313/NET-2022-01-1_09

latency of NetVM and SR-IOV while forwarding packets,
both behave mostly the same for lower latencies, at about
40 µs to 50 µs. But the latency of SR-IOV starts to rise
shortly above 5 Gbit/s of load, to 70 µs, while NetVM
stays more or less the same. Although not mentioned
explicitly, this is probably due to the limitations of SR-
IOV seen in other papers discussed previously. Since here
SR-IOV is not optimized in any way, it presumably starts
to reach the limits of what the CPU can handle interrupt-
wise. Unfortunately CPU load is not measured here [7].

Bauer et al. [8] compare the performance of SR-IOV
software function chaining (SFC) using a single PF to that
of SFC using VFs. When just comparing the performance
of the ixgbe and the ixgbevf drivers, latency over an Open
vSwitch OvS bridge is also examined. For bandwidths
≤500 Mbit/s both are around 104 µs. Above that, ixgbe
is at about 0.8× 107 µs, while ixgbevf is at 0.8× 106 µs.
This is presumably due to the tasks which would normally
be performed by the OS now being performed by the
NIC directly, which is especially beneficial for SFCs,
since the forwarding between two SFs can be offloaded
onto the NIC. When looking at interrupts, VF and PF
mostly behave the same for loads below 700 Mbit/s.
Above that, the number of interrupts for PF decreases
drastically, from 104 Interrupts/s to 102 Interrupts/s, while
the interrupt numbers for VF stay mostly the same at
104 Interrupts/s. As already seen previously, this is due to
the lack of a number of features concerning the controlling
of interrupts, like dynamic interrupt throttle rate. When
comparing the scalability of SCFs using SR-IOV to that
of SFCs using virtual ethernet (vEth) interfaces, the results
show that using vEth yields higher throughput for the
tested chain lengths from 1 to 5 SFs. This is explained
with VFs having less efficient drivers and that there are
more I/O operations required. Examining the throughput
chains of length one, two and four with varying load,
vEth performs better initially. For chains with length two
and four, SR-IOV still takes back the lead after a certain
threshold. Due to the software nature of vEth, as soon as
all resources are taken up, the whole system suffers. Since
with SR-IOV, a big part of the processing is offloaded onto
the NIC, this is not a problem [8].

3. Optimizations

There are several different optimization options. A lot of
them focus on decreasing the CPU load on high through-
put, though there are of course others. In this section we
discuss several of them.

Dong et al. [3] explore the performance of SR-IOV
together with the hypervisor Xen. Three major optimisa-
tion methods are proposed and tested, all concentrating on
interrupts and the minimisation of performance hits from
them. One of them being the moving of message signalled
interrupts (MSI) from the device model in userspace into
the hypervisor. The emulation of a virtual end of inter-
rupt (EOI) is also identified as a hotspot and simplified
massively. Thirdly, an adaptive interrupt coalescing (AIC)
method is developed, which adjusts the interrupt rate dy-
namically based on a set of equations to reduce load on the
CPU. This optimization presumably has the most impact
on latency, though unfortunately this is not measured. A
9.6 % drop in TCP throughput is observed when using

an interrupt frequency of 1 kHz, which is attributed to
TCPs latency sensitivity, though it is mitigated by the AIC
optimisation. Since the bandwidth is at its maximum of
around 1 Gbit/s per guest even before the optimizations, it
is barely affected by them. As is expected, overhead of the
CPU is heavily reduced, together the optimizations reduce
it from 499 % to around 227 %. This mostly affects the
host, but some improvements are also made in the CPU
overhead of the guests. When testing the scalability of
the three optimizations no major issues are detected, even
at 60 VMs, although it might be important to mention
that there are still only a total of 10 1 Gbit/s connections
available [3].

Li et al. [9] explore the method of throttling the
frequency of these interrupts on the fly to increase the
throughput. The method of using a fixed interrupt rate
(FIR) implemented in some device drivers is used as
a baseline for measurements with the baseline fixed at
8000 Interrupts/s. Two new approaches of regulating inter-
rupts are proposed. Course grained interrupt rate control
(CGR) classifies the traffic into four categories, depending
on the packet size. Based on that, the interrupt rate is set,
higher for smaller packets and lower for larger packets.
Packets with sizes from 64 B to 300 B are classified as
latency sensitive traffic and the interrupt rate is set to
20 kInterrupts/s. Packets smaller than 64 B are classified
as latency critical traffic, the interrupt rate is set to
100 kInterrupts/s. How this actually translates to praxis
is not measured. The idea behind Adaptive interrupt rate
control (AIR) is that there is always an optimal interrupt
rate, depending on the currently used bandwidth and av-
erage packet size, which can be calculated. It is set based
on the current bandwidth, average packet size, number of
packets received on each interrupt and the current interrupt
rate. Comparing these three approaches using netperf TCP
and UDP stream, it becomes clear that for 4 VMs or
less the CPU overhead is large enough that the CPU
performance is worse using AIR and CGR compared to
FIR. When using TCP stream, a packet size of 1472 B
and four VMs, the CPU usage for AIR, CGR and FIR
is ~500 %, ~400 % and ~395 % respectively. That said,
the throughput when using AIR and CGR is consistently
on par or higher than when using FIR, for higher VM
numbers higher than 8 AIR even outperforms CGR [9].

Huang et al. [10] talk about optimizing SR-IOV with
the AIR also discussed by Li et al. [9] as well as an
approach using multi-threaded NAPI. New API (NAPI) is
an API in the Linux kernel allowing the driver using it to
mask some of the interrupts produced by incoming pack-
ets. It normally is single-threaded, which makes it more
and more of at bottleneck with increasing VM counts,
since they all are limited by the capacity of this single
thread [11]. A multi-threaded NAPI is proposed, consist-
ing of a dispatcher and n worker threads. This increases
the throughput but also the CPU usage. For example
when using TCP with a packet size of 1472 B, throughput
increased by 38 %, from ~5.8 Gbit/s to ~8 Gbit/s, but CPU
usage also increased by 73 %, from ~100 % to ~175 %. For
smaller packets, the performance gain is barely noticeable,
it is up to about 0.6 Gbit/s from 0.5 Gbit/s. The increase
in CPU usage is similarly small, from 60 % to 65 %. UDP
performance is behaves similar, but it is lower in general,
due to UDP [10].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 45 doi: 10.2313/NET-2022-01-1_09

4. Analysis

In some works, the latency of SR-IOV is very close to that
of native networking, in others it is not. In some it is not
compared to native. The absolute numbers differ greatly
as well, by up to 20 µs. Liu [2] measures an absolute
latency of 24 µs for SR-IOV and 17 µs for native with
packet sizes ≤1 KiB. Normalized to the latency of native
networking that equates to 141 % for SR-IOV. For the
same packet sizes Lockwood et al. [4] measure the latency
of SR-IOV at 40 µs, which is nearly twice as much. When
normalizing the latencies, SR-IOV is at about 200 % to
250 % compared to that of native. These numbers do not
at all match those measured by Liu [2]. Even though the
setups seem similar at first, they differ in many aspects,
not even the benchmarks used to measure the latency are
similar. This means that even though the numbers seem
comparable, they actually are not.

Since the impact of the previously mentioned opti-
mizations is also often not measured, we try to make some
educated guesses on how it could behave The MSI and the
EOI optimizations proposed by Dong et al. [3] presumably
have little to no impact on latency. This is because both
do not really touch when an incoming packet is processed
but rather how it is processed. Since both optimizations
do not massively change what actually happens when a
packet arrives, we can assume that the latency stays about
the same. The optimizations with the presumably largest
impact on latency are the various interrupt coalescing
optimizations. Since they reduce load on the CPU by
coalescing interrupts together, an arriving packet might not
immediately get processed. This could lead to increased
latency, with the severity depending on the intricacies of
the optimization. It is even touched upon by Dong et al.
[3] where the degraded TCP performance after applying
the AIC optimization is attributed to the higher latency
sensitivity of TCP. We can assume that the other coalesc-
ing optimizations behave similarly. The CGR and AIR
optimizations mentioned by Li et al. [9] and Huang et al.
[10] are very similar to the previously mentioned interrupt
coalescing optimizations, but they adjust the interrupt rate
on the fly based on the traffic. This could mean that latency
sensitive traffic is still delivered fast enough and large
traffic volumes are not bottlenecked by the CPU. Though
due to the way the current interrupt rate is calculated, the
latency sensitive traffic would have to dominate either in
number of packets or in used bandwidth. This could mean
that the applications running on the machine have to be
carefully chosen and matched to not interfere with each
other.

5. Conclusion

As mentioned previously, the very few latency measure-
ments which are provided paint a very inconclusive pic-
ture. The measurements which are provided can only be
generalised to a certain point. We did make some educated
guesses about how the optimizations mentioned before
could impact latency, but those are only guesses and do not
replace actual measurements. More latency measurements
are definitely needed, with and without optimizations.

One question that is still left completely unanswered
by any of the surveyed papers is how latency behaves

with a growing number of VMs. Scalability is touched
upon by Dong et al. [3] and Bauer et al. [8], but not
in regards to latency. Bauer et al. [8] show what is to
be expected, above a certain number of VFs the CPU
becomes a bottleneck due to the huge amount of interrupts
that need to be handled. Since they did not use VMs, but
only VFs used by applications directly, this effect would
presumably get worse since the interrupts not only need
to be handled but then also virtualized. These problems
could maybe be mitigated by the optimizations proposed
by Dong et al. [3]. Their optimizations make VMs with
SR-IOV scale nearly perfectly, at least bandwidth- and
CPU-wise. Unfortunately latency is measured by neither.
Either way, unfortunately, more data is also absolutely
necessary.

Although we tried to focus on latency in this pa-
per, bandwidth still needs to be talked about. There is
some conflicting data regarding this. While most of the
mentioned papers come to the conclusion that bandwidth
does not seem to be a problem for the tested systems
(mostly 10 GbE), Lockwood et al. [4] discover that SR-
IOV cannot quite keep up with native. Though in this case,
it could be due to the fact that MPI bandwidth is tested,
not “normal” bandwidth. In most cases, SR-IOV can keep
up with native, even at speeds up to 20 Gbit/s [5].

References
[1] “Xen Networking,” https://wiki.xenproject.org/wiki/Xen_

Networking, Last Accessed: 2021-06-07.
[2] J. Liu, “Evaluating standard-based self-virtualizing devices: A per-

formance study on 10 GbE NICs with SR-IOV support,” in 2010
IEEE International Symposium on Parallel Distributed Processing
(IPDPS), 2010, pp. 1–12.

[3] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High
performance network virtualization with SR-IOV,” in HPCA - 16
2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, 2010, pp. 1–10.

[4] G. K. Lockwood, M. Tatineni, and R. Wagner, “SR-IOV: Perfor-
mance Benefits for Virtualized Interconnects,” in Proceedings of
the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment, 2014.

[5] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris, “Charac-
terizing the Performance of Concurrent Virtualized Network Func-
tions with OVS-DPDK, FD.IO VPP and SR-IOV,” in Proceedings
of the 2018 ACM/SPEC International Conference on Performance
Engineering, 2018, pp. 285–292.

[6] X. Xu and B. Davda, “SRVM: Hypervisor Support for Live Migra-
tion with Passthrough SR-IOV Network Devices,” SIGPLAN Not.,
vol. 51, no. 7, pp. 65–77, 2016.

[7] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High
Performance and Flexible Networking Using Virtualization on
Commodity Platforms,” in Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation, 2014,
pp. 445–458.

[8] S. Bauer, D. Raumer, P. Emmerich, and G. Carle, “Intra-Node
Resource Isolation for SFC with SR-IOV,” in 2018 IEEE 7th
International Conference on Cloud Networking (CloudNet), 2018,
pp. 1–6.

[9] J. Li, S. Xue, W. Zhang, R. Ma, Z. Qi, and H. Guan, “When I/O
Interrupt Becomes System Bottleneck: Efficiency and Scalability
Enhancement for SR-IOV Network Virtualization,” IEEE Transac-
tions on Cloud Computing, vol. 7, no. 4, pp. 1183–1196, 2019.

[10] Z. Huang, R. Ma, J. Li, Z. Chang, and H. Guan, “Adaptive and
Scalable Optimizations for High Performance SR-IOV,” in 2012
IEEE International Conference on Cluster Computing, 2012, pp.
459–467.

[11] “NAPI,” https://wiki.linuxfoundation.org/networking/napi, Last
Accessed: 2021-07-30.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 46 doi: 10.2313/NET-2022-01-1_09

Towards General Sliding Window Stream Analysis

Simon Hanssen, Kilian Holzinger∗, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: hanssen@in.tum.de, holzinger@net.in.tum.de, stubbe@net.in.tum.de

Abstract—Real time stream processing becomes more and
more important as data arrives continuously and information
needs to be based on the latest data. To query an unbounded
data stream, sliding window queries are utilized. Naively
evaluating these queries often causes a lot of redundant
computations that unnecessarily lower the performance.
Over the years different ideas have been proposed that
capitalize on the nature of sliding window queries to reduce
redundant calculations. This paper explains the basics of
sliding window aggregation and then shows different tech-
niques that emerged. These techniques are then evaluated
and compared based on the performance studies conducted
by the researchers and restrictions they impose on the kind
of workloads they can handle.

The techniques investigated are paned and paired Win-
dows and a more general version of this called stream
slicing. Additionally Slider and Reactive Aggregator which
utilize Trees and DABA which is based on the TwoStacks
algorithm are included. As of publication of this Paper, the
general version of stream slicing fits best as efficient a drop-
in replacement without posing any restrictions.

Index Terms—sliding window, stream processing, stream
aggregation

1. Introduction

In many real time applications, data continuously ar-
rives in a stream and needs to be processed as such since
users want whatever information they query to be based
on the most recent data. Because of this, batch processing
is no longer an option. The amount of data that arrives
is potentially infinite and older data might get irrelevant
over time. To query an unbounded data stream window
queries are utilized, specifying a section of the stream to
be evaluated. This is usually the most recent part and as
new data arrives, the query should be reevaluated. The
amount of incoming data needed to trigger an update is
often way smaller than all data currently relevant, so when
computing a new output, many calculations are redundant,
leaving opportunities for optimization. Solutions presented
to capitalize on these opportunities often pose restrictions
on the type of queries or streams they can be used for.
This paper provides the basics needed to understand the
challenges those solutions faced and then presents selected
techniques, how they achieved performance gains, how
they compare to previous ideas and what restrictions they
pose.

The rest of the paper is structured as follows: Section
2 explains the basics of sliding window analysis, Section

3 defines aspects that are important when discussing the
solutions in Section 4. Section 5 gives an outlook on how
sliding window analysis might further evolve. In Section
6 related and relevant work not dealt with in detail in this
paper is mentioned and Section 7 concludes.

2. Background

To query information from a theoretically unbounded
amount of data, one uses windows. This means, giving a
cutoff to that data is considered relevant for the query.
A popular example that will be referred to repeatedly
in this paper is a trader at the stock market who has
access to a stream containing all trades for a specific stock.
The stream is made of tuples that in this example would
contain all the information about the trade they represent
e.g. the amount of shares traded, the time of the trade, the
price etc. They want to know the average price their stock
was traded for recently and now give a cutoff for trades to
still be considered. They might ask for the average price of
the last 5000 trades or the average price of all trades that
happened during the last ten minutes of them issuing the
query. With a query like this they would define a window
with a size of 5000 trades/tuples or ten minutes. The size
of the window is also known as range

So windows are a way to query data streams, but the
trader probably will issue their query more than once,
as they want to have live data all the time. Maybe they
ask for the average of the last ten minutes and want
it updated every ten seconds. For this, sliding window
queries exist. Here, additionally to the size of the window
one is interested in, one also has to provide a measure
indicating when to update the given window based on the
newest state of the stream. This update measure is also
called slide. So our trader’s query would have a range of
ten minutes and a slide of ten seconds.

Figure 1 shows visualizes the process of how a sliding
window query behaves. The query in this example has
a range of nine and a slide of three tuples respectively.
One tuple is represented by one green circle, and the
tupsles shown are the end of the stream. There might be
an arbitrary number of tuples preceding them but they are
not relevant for the query, since they are not even part
of the first window. When the query first is issued the
latest nine tuples are inside the window and aggregated.
As time passes more tuples arrive and as soon as thrre new
tuples arrived, a new aggregate is calculated (third row).
The first window actually does not exit or matter anymore
here, but it is left drawn to visualise the process. The forth

Seminar IITM SS 21,
Network Architectures and Services, November 2021 47 doi: 10.2313/NET-2022-01-1_10

Window 1

Window 1

Window 1
Window 2

Window 1
Window 2

Window 3

Figure 1: An example of a sliding window query with
slide = 3 and range = 9 while tuples arrive over time

row shows the state after even more tuples arrived and the
window is updated once more.

The naive way of answering this query would be
evaluating it without any considerations about the nature
of the problem: every ten seconds, find all trades in the
stream that arrived at most ten minutes ago and average
their price. While this might work fine for a not that
frequently traded stock, it is rather inefficient in most
cases. Considering that for each time the window slides,
i.e., ten seconds pass and the new average is computed,
most of the considered trades stay the same – the ones
that happened in the last nine minutes and fifty seconds
before the update – recomputing from scratch involves
a lot of redundant calculations. Looking at Figure 1 the
redundancy can be seen in the overlap of Window 1 and
2.

If we had computed the average of the last ten seconds
and the other nine minutes and fifty seconds separately
and then combined them, we could use that again with
the new ten seconds of data that arrive. The next time
ten seconds pass, we would have to recompute everything
again though, since we cannot easily split off another
ten second slice of the nine minute and fifty second
chunk left over. This nevertheless shows the potential for
optimization, later in the paper we will see how different
techniques capitalize on that.

3. Workload Characteristics

Before investigating the different solutions that were
developed, requirements different workloads pose to
stream processing systems will be given here to allow the
discussion of the solutions later.

3.1. Latency and Throughput

Naturally, memory usage and computation time are
two important factors when it comes to a good query
engine, but the time aspect needs to be viewed from two
points here: latency and throughput. The former describes

the time it takes a query to be answered once it is issued,
the latter the amount of data that can be handled in a
certain amount of time, which is directly dependent on
how long it takes to process an incoming tuple.

3.2. Requirements to the Aggregation Functions

In general a sliding window query provides windows
of tuples repeatedly and then performs some sort of opera-
tion on those tuples to gather an useful output from them.
These operations can be seen as aggregation functions
taking a set of tuples as input and giving the desired result
as output. In the case of our stock trader that function
would take the average price of all trades in the set given
to it. When discussing aggregation functions in the context
of stream processing, it is important to note that they are
not seen as operations on sets of tuples. Instead they are
split into three sub-functions. These sub-functions will be
explained using average() as an example: (1) The first
function takes one data tuple and converts it into a partial
aggregate. In the case of average() this would take the
input and convert it into a tuple (sum,count) with the value
of the input as sum and 1 as count. (2) The second function
takes two of those partial aggregates and combines them
into one. In our case that would be adding up the sum
and count parts of the partials respectively. (3) The last
function takes one partial aggregate and converts it into
a final output, here it would return sum/count, this would
then yield the average of all tuples that were combined
into the partial aggregate used as input for the third
function.

When discussing aggregate functions, mainly the sec-
ond function is of interest, so "average() is commutative"
means that the combination of two partial aggregates is.
This idea is crucial for many techniques presented later,
since it allows partial (pre-)aggregation. This only works
as long as the function is associative though, which is
why all ideas presented later require this to be the case.
Considering the lack of literature for cases where it is not
given and authors noting that cases where it is not given
are rare, associativity seems to be a reasonable assumption
to make [1]–[3].

Invertibility and commutativity on the other hand are
not given for every function of common interest; functions
like max and min are not invertible. As an example for
a not commutative aggregate Tangwongsan et al. name
"collect-like" functions like concatStrings [2].

3.3. Requirements to the Stream

An important requirement several solutions have is
that the tuples in the stream arrive in order. To show
why this can be crucial, we can look at the stock trading
example again. If the data about the trades does not arrive
in the order that the trades took place and we also do not
sort them on arrival, answering some queries can become
difficult. If our stream is ordered, finding an entry that is
older than ten minutes signals that up until that point, all
entries about trades are within our range of interest. If we
cannot guarantee that the stream is in order though, the
entry might just have arrived a little late for some reason,
there might be further entries of interest further behind.
Maybe the internet connection in a trading hub went

Seminar IITM SS 21,
Network Architectures and Services, November 2021 48 doi: 10.2313/NET-2022-01-1_10

down, and now information about a trade that happened
arrives fifteen minutes late. Under the assumption that the
stream is in order, one would now stop looking further
for relevant trades and get a skewed result. Assuming the
stream is not in order one would struggle finding a point
where it is guaranteed that no relevant trades can be found
in the rest of the stream anymore.

3.4. Requirements to the Window

Different solutions have varying restrictions on the
windows they can handle. A good way to classify those is
presented by Traub et al. [4]. They divide windows into
three categories:
(1) Context free windows: a window is context free, if its
boundaries are already defined before it begins. The first
stock trading example (average of the last ten minutes
every ten seconds) is context free, all windows start ten
seconds apart and span ten minutes, independent of the
trades that happen.
(2) Forward context free windows: a window is forward
context free, if we can tell whether a tuple marks the
beginning or end of a window as soon as it arrives. An
example: our stock trader wants to know the amount of
trades that happened, separated each time the price of the
stock passes the $100 mark. We cannot tell when the
window will end until a trade happens that crosses the
mark, but for every trade we already know of, it is clear
whether or not it closed the preceding window.
(3) Forward context aware windows: for a forward
context aware window, we cannot tell if a tuple marks the
beginning of a window in the moment that it is processed.
The second version of the stock trading example (average
of the last 5000 trades every ten seconds) falls into this
category. Until ten seconds have passed and the window
slides, it is unclear which tuples are within the cutoff of
the 5000 tuple range we specified. This is because each
arriving tuple pushes the the cutoff further, and only after
the ten seconds are over we can be sure that no tuples
relevant for that update will arrive.

Another occurring aspect are concurrent windows. The
same or different users might issue more than one query
over the same data stream with different slide and range
parameters, forcing parallel evaluation of each of those
on their own if not taken into consideration. While this
does not impose any restrictions if the system is aware
of concurrent queries existing it can capitalize on that for
further improvements.

4. Techniques

In this section different techniques for speeding up
stream processing in comparison to from scratch recom-
putation will be presented.

4.1. Paned Windows

A first step to prevent having to recompute the whole
aggregate every time the window slides was made with the
introduction of paned windows by Jin Li et al. [5] They
split the arriving data stream up into smaller sections -
panes - of the same size, choosing the size as the greatest

common divisor of the slide and range of the window.
Using the first stock trading example this would mean
creating panes with the size of ten seconds. For each
of these panes the partial aggregate is computed, and
when the next full aggregate is needed, only these partial
aggregates need to be combined. This is beneficial in two
ways: the partial aggregate for one pane only needs to be
computed once and can be used again (remember: nine
minutes and fifty seconds of the window stay the same
each time it slides) and when the final aggregation is due,
most of the work has already been done by computing the
partial aggregates. For calculating and combining the par-
tial aggregates the associativity of the function is crucial.

Once a pane has been aggregated, the tuples making it
up are not required to stay in memory anymore, allowing
for savings here, too. Taking our example again, instead
of having to save the thousands of trades that happened in
the last ten minutes, only 60 partial aggregates are needed.

This is the first instance of a technique that will later
become known as stream slicing [4], [6]. Several other
ideas presented later pick up on the idea and improve
it, overcoming the restrictions that paned windows still
have: (1) windows need to be context free so the size of
the panes can be determined. (2) The stream needs to be
in order as arriving tuples are inserted into the currently
active pane.

While the performance evaluation conducted was not
very thorough, in the cases that are relevant for actual
applications, i.e., more than a few tuples per pane and
panes per window, they find a speedup of 5 to 10 times
when processing the query compared to recalculation. The
greater the number of tuples per pane and panes per
window, the better and as Krishnamurthy et al. noted it
is reasonable to expect those numbers to be large enough
for significant efficiency gains in real life scenarios [7].

4.2. Sharing Paired Windows and Fragments

Krishnamurthy et al. pick up the idea of paned win-
dows and improve and extend it in the following ways:
(1) They introduce paired windows, a way to slice a
stream into fewer slices than when using paned windows,
allowing for faster final aggregation. (2) They present a
way of handling multiple sliding window queries over the
same stream efficiently. They do this by slicing the stream
so that the partial aggregates can be shared, i. e., used
by all queries. While this leads to smaller and therefore
more slices, it prevents redundant computations because
in a non-sharing case every query would calculate the
aggregates leading to the slices independently. (3) They
introduce shared Data Fragments, a way to allow different
selection predicates in concurrent queries while still taking
advantage of sharing partial aggregates [7].

So if one trader only wants to consider trades where
more than 100 shares were traded, and another one is
only interested in those where the price was at least
$4000 in total, their queries do not need to be handled
separately anymore. While this idea is not discussed in
further literature, it should be easy to include it in other
stream slicing techniques like the one described in Section
4.6. This is because the splitting in shards happens after
and independently of the slicing, so no matter what slicing

Seminar IITM SS 21,
Network Architectures and Services, November 2021 49 doi: 10.2313/NET-2022-01-1_10

technique is used one can split up the resulting slices
afterwards.

While their analysis shows that paired windows only
offer a minor improvement to paned ones, when sharing
partial aggregates between concurrent windows with a
regular workload, their implementation only needed 10%
of the time to calculate aggregates.

4.3. Slider

Bhatotia et al. present an idea based on the idea of
incremental computing [1]. They introduce self-adjusting
contraction trees, a set of data structures that is able
to deal with the requirements of inserting and removing
tuples constantly as sliding windows demand. The leaf
nodes of these trees are the output of applying the first
aggregation sub-function to the tuples arriving from the
stream and each inner node contains the partial aggregate
resulting from combining its children. The value in the
root node is then used to compute the final aggregate.
They implemented a system they named Slider that uses
these trees to efficiently evaluate sliding window queries.

The resulting speedup is only mediocre though; com-
pared against recomputation from scratch their tests
showed a speedup of up to four times. While they did
not include a reference implementation of the solutions
presented earlier in their tests and they use other metrics
to evaluate, results presented in other papers indicate a
better performance of those compared to Slider [1], [4],
[5], [7], [8]. Furthermore Slider does not allow concurrent
windows and one of their optimizations requires the aggre-
gation function to be commutative, which is, as explained,
not always the case. Slider accepts queries stated in Pig-
Latin [9] allowing all types of windows to be utilized
[1]. Like with the previous ideas, the stream needs to be
ordered here, too.

4.4. Reactive Aggregator

Tangwongsan et al. present a very similar approach
to Slider [3]. They create a binary tree on top of all
tuples currently in the window. For this they created
the FlatFAT data structure which stands for flat fixed-
size aggregator and the Reactive Aggregator (RA) frame-
work which uses FlatFAT to efficiently evaluate window
queries. They show that their implementation needs at
most O(m + m log(n/m)) partial aggregations for an
update of size m to a window of size n. They also only
compare their implementation against one that recomputes
everything from scratch every time and use a slide of 1
for those comparisons, showing that, in that case, their so-
lution becomes more than 10x faster than recomputation.
They reason that this slide granularity is the worst for
their implementation but the same goes for recomputation.
Because of the similarity of the ideas, the real performance
gains probably are comparable to Slider.

Traub et al. included an implementation of RA into
performance studies they made in [4], [6]. It showed ex-
cellent latency but because each new arriving tuple forced
the binary tree to be updated, the throughput suffered
compared to slicing techniques. In comparison to Slider
they do not require commutativity of aggregate functions
in any way. They also allow tuples to be evicted out of

order. While this can be useful in some cases, the way
more important case of inserting tuples out of order was
not addressed. Since RA only allows aggregation on all
tuples currently handled, it does not support concurrent
queries, but at the same time allows all types of windows
to be used.

4.5. DABA

The De-Amortized Banker’s Aggregator or DABA is
an algorithm developed by Tangwongsan et al. [8] It
guarantees worst case constant time for each window
operation, without requiring the aggregation function to
be invertible and by this allowing for consistently low
latency. For an invertible aggregation function this is easy
to achieve: adding a tuple just means aggregating it with
what already has been accumulated and removing one uses
the inverted function with the tuple to be removed. DABA
uses a system of pointers and partial aggregates to allow
this for non-invertible functions as well. DABA is based
on an algorithm called Two-Stacks that only had amortized
constant cost, causing occasional peaks in latency. The
modifications made allow the work to be spread across
all operations made.

In their performance study these effects show: while
Two-Stacks has a lower average latency, the standard devi-
ation of latencies of single operations was about 20 times
higher compared to DABA. The overhead for spreading
out the work between all operations results in slightly
lower throughput for DABA. It still outperforms Reactive
Aggregator regarding throughput while the only restriction
compared to RA is that windows must be FIFO, but since
it is unusual for tuples to be evicted out of order, this is
usually the case.

4.6. General Stream Slicing

Traub et al. developed a generalization of stream slic-
ing techniques that removes all restrictions given except
the associativity of the aggregation function [4]. The basic
idea stays the same: the stream is split up into smaller
slices that do not need to be divided further because there
are no window borders within them. Because of that they
can be partially aggregated allowing working on slice
basis instead of tuple basis.

They present a set of decision trees that based on
properties of the windows, stream and aggregation func-
tion allow to decide, the best way to handle a query
for a specific case. One example: for an in-order stream
with forward context free windows, it is sufficient to only
keep the partial aggregates of slices in memory, allowing
tuples to be discarded after they were handled and by this
reducing memory usage.

They implemented an eager and a lazy version; the
eager one computes a tree based on Reactive Aggregator,
but with the slices as leaves instead of tuples. By doing
this it provides great latency while not suffering from as
massive drawbacks in throughput as RA compared to the
lazy version since the tree is way smaller.

The results from their experiments show great poten-
tial, general stream slicing matches or outperforms other
techniques they compared it to even if the conditions for
those were optimal.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 50 doi: 10.2313/NET-2022-01-1_10

5. The Future
While work in the past mainly was focused on finding

new ideas that allow for more efficient stream processing
than naively recomputing everything when needed and
lowering restrictions those ideas posed, we now arrived at
a state where a general approach has been found. It already
incorporated different concepts from before but there is
still room for improvement. As Tangwongsan et al. lately
suggested, DABA could be used in general stream slicing
if the stream is in-order [10]. So instead of improving
each technique on its own or coming up with new ones,
combining the different strengths of different approaches
seems promising.

6. Related Work
Cutty [6] was another step towards general stream

slicing that picked up on some aspects introduced by
RA. Scotty [11] is an open-source implementation of
general stream slicing. FiBA [2] uses finger trees to allow
efficient handling of out-of-order tuples, showing excellent
results on its own and being another attractive candidate
to include in general stream slicing to improve the out-of-
order case [11]. Zhang et al. analyzed different techniques
that focus on utilizing hardware as well as possible for fast
stream processing [12].

7. Conclusion
Optimizing sliding window aggregation poses differ-

ent challenges that can prevent optimizations to reduce of-
ten occurring redundant computations from being used in
general stream processing systems. With the introduction
of paned windows came the idea of stream slicing, i.e., the
realization that one can take partial aggregates of several
tuples as a new smallest unit and still compute everything
needed. This came with a rather strict set of restrictions
though. Later this concept was generalized lifting those
restrictions. This general version already performs well
and on top of that offers opportunities to include other
specialized optimizations like DABA, RA or FiBA to fur-
ther increase the speed of the different cases that need to
be handled. After a lot of ideas that rather were a proof of
concept than really applicable, with this there now exists
an efficient alternative to conventional, recomputing-based
solutions that can be used as a drop-in replacement with
potential to increase performance even further with more
research done.

References

[1] P. Bhatotia, M. Dischinger, R. Rodrigues, and U. A. Acar, “Slider:
Incremental sliding-window computations for large-scale data anal-
ysis,” MPI-SWS, CITI/Universidade Nova de Lisboa, CMUTechni-
cal Report: MPI-SWS-2012-004 September, 2012.

[2] K. Tangwongsan, M. Hirzel, and S. Schneider, “Optimal and
general out-of-order sliding-window aggregation,” Proc. VLDB
Endow., vol. 12, no. 10, p. 1167–1180, Jun. 2019. [Online].
Available: https://doi.org/10.14778/3339490.3339499

[3] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu, “Gen-
eral incremental sliding-window aggregation,” Proceedings of the
VLDB Endowment, vol. 8, no. 7, pp. 702–713, 2015.

[4] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl, “Efficient window aggregation with general
stream slicing.” in EDBT, 2019, pp. 97–108.

[5] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “No
pane, no gain: efficient evaluation of sliding-window aggregates
over data streams,” Acm Sigmod Record, vol. 34, no. 1, pp. 39–44,
2005.

[6] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl,
“Cutty: Aggregate sharing for user-defined windows,” in Proceed-
ings of the 25th ACM International on Conference on Information
and Knowledge Management, 2016, pp. 1201–1210.

[7] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for
streamed aggregation,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, 2006, pp. 623–
634.

[8] K. Tangwongsan, M. Hirzel, and S. Schneider, “Low-latency
sliding-window aggregation in worst-case constant time,” in Pro-
ceedings of the 11th ACM international conference on distributed
and event-based systems, 2017, pp. 66–77.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: A not-so-foreign language for data processing,”
ser. SIGMOD ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 1099–1110. [Online]. Available:
https://doi.org/10.1145/1376616.1376726

[10] K. Tangwongsan, M. Hirzel, and S. Schneider, “In-order sliding-
window aggregation in worst-case constant time,” CoRR, vol.
abs/2009.13768, 2020. [Online]. Available: https://arxiv.org/abs/
2009.13768

[11] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl, “Scotty: General and efficient open-source
window aggregation for stream processing systems,” ACM Trans.
Database Syst., vol. 46, no. 1, Mar. 2021. [Online]. Available:
https://doi.org/10.1145/3433675

[12] S. Zhang, F. Zhang, Y. Wu, B. He, and P. Johns, “Hardware-
conscious stream processing: A survey,” SIGMOD Rec., vol. 48,
no. 4, p. 18–29, Feb. 2020. [Online]. Available: https://doi.org/10.
1145/3385658.3385662

Seminar IITM SS 21,
Network Architectures and Services, November 2021 51 doi: 10.2313/NET-2022-01-1_10

Seminar IITM SS 21,
Network Architectures and Services, November 2021 52

Tracing the Execution Path in Mac80211

Pooja Parasuraman, Jonas Andre∗, Stephan Günther∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: pooja.parasuraman@tum.de, andre@net.in.tum.de, guenther@tum.de

Abstract—The purpose of this study is to trace the execution
paths of a wireless packet, traversing within the Mac80211
subsystem. Eventhough the world progresses towards build-
ing high speed wireless networks by optimizing link and rout-
ing costs, the end system’s processing capability remains a
bottleneck in limiting the efficiency of networks. As first step
in optimising per-packet processing at wireless endpoints, we
analyse the existing architecture of the Mac80211 subsystem.
We discuss the transmission path of IEEE802.11 packets
with a focus on managed mode of operation. This paper
presents the structure and design of the Linux Kernel and the
functions through which IEEE802.11 packets traverse. An
experiment is perfomed to extract real-time trace of packets
using explicit kernel logs for comparing the results obtained
from manual tracing of Linux source code.

Index Terms—Linux Kernel, Mac80211, Wireless Driver,
IEEE802.11 WLAN

1. Introduction

One of the most widely used protocols in the family of
IEEE 802 Local Area Network standards is the wireless
LAN protocol (IEEE 802.11 [1]). IEEE 802.11 standard
defines the link layer and physical layer protocols for
communication between wireless devices. This standard
needs to be followed by all driver developers in order to
facilitate interoperability.

The Linux operating system provides a generic frame-
work for wireless device drivers called the Mac80211. It
is a subsystem that interfaces between the kernel and the
device driver for various functionalities with respect to the
wireless network packets that pass through the subsystem.
An IEEE 802.11 wireless network interface card (NIC)
can operate in one or many modes [2] as discussed below.
Master : NICs in Master mode act as Access Points
(AP) and follow a hierarchy of operation. A connection to
another wireless NIC is possible only if the latter operates
in Managed mode. This mode can also be termed as AP
mode or Infrastructure mode.
Managed : Managed mode NICs act as clients (also
termed as slaves) and associates to an already created
wireless network by a master card. Managed mode is the
counter-part of Master mode. There is a strict master-slave
hierarchy and hence a client NIC can only communicate
with its own master. It is not possible for two client cards
to interact between themselves directly.

There are other less commonly used modes in which
a NIC can be configured. In Monitor mode, NICs can
sniff all radio traffic on a particular channel for wireless

network debugging and analysis. Promiscuous mode is
similar to Monitor mode but the difference is the former
mandates an association with an AP (active sniffing) while
the latter supports passive sniffing. Ad-hoc mode is used
in peer-to-peer networks. Mesh mode combines ad-hoc
mode and routing. A NIC in Repeater mode extends the
existing wireless networks for longer range of access. In
Tunnelled Direct Link Setup (TDLS) mode, a direct secure
fast path for data transfer between communicating peers
is made possible in a hierarchical network. This facilitates
faster media streaming and other data transfers.

This study is based on manual tracing using the open-
source Linux Kernel source code with focus on Managed
mode. Section 2 talks about the related research work
performed in this area. Section 3 provides an overview of
the Linux Kernel architecture with respect to the Wireless
network stack. Section 4 talks about Mac80211 subsystem
in detail. A special mode available in Mac80211 subsytem
of Linux Kernel - the Fast Xmit mode - is discussed
in Section 5. Finally, Section 6 explains the experiment
conducted to trace IEEE802.11 packets traversing the
Mac80211 subsytem.

2. Related work

Vipin et al. analyses the implementation of
IEEE802.11 network stack in the Linux Kernel and
its interaction with open source device drivers [3].
Lisovey et al. discuss about the feasibility of including
a module in the Linux Kernel to enable wireless
communication for vehicular environment. Vitalik et al.
proposes a design for portable and pluggable mode for
the Mac80211 subsystem with add-on features such as
co-operative retransmission support [4]. All these papers,
analyse the wireless network stack in the Linux Kernel
and discuss whether the design of Mac80211 framework
can be optimised and enhanced.

The work from multiple analysis, implementations and
architectural papers have been used as a base for this paper
in order to understand the architecture of the Mac80211
subsystem.

3. Linux Kernel and Mac80211

The Linux Kernel network stack is designed in a
modular way with a clear separation between multiple
entities. Figure 1 depicts how the wireless network stack is
layered in the Linux Kernel and how interaction between
the layers takes place. The core understanding of this
architecture is obtained from [5] and [6].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 53 doi: 10.2313/NET-2022-01-1_11

Figure 1: Kernel Wireless Stack

In order to better understand the architecture, we
analyse each component using a top-down approach. The
user space is composed of applications, such as Hostapd
and WPA supplicant, that use wireless as their underlying
technology. Hostapd facilitates configuration and control
of Access Points, whereas WPA supplicant is a control
interface to manage wireless clients. User space applica-
tions interact with the Linux Kernel using config80211
subsystem [7]. Config80211 is a configuration API acting
as a bridge between user space applications and the un-
derlying driver via the Mac80211 subsystem. Interaction
between user space and the config80211 happens via the
802.11 netlink interface called nl80211 [8].

The Mac80211 subsystem [9] is a generic frame-
work provided by the Linux Kernel. Wireless drivers use
the Mac80211 framework to register callbacks for all
packet processing functionalities. These are available in
kernel space and they interact using config80211 ops and
ieee80211 ops [8], which are the wireless configuration
operations. Every wireless interface has its own set of
configuration operations which is called from user space.

4. Mac80211 TX Path

This section provides a detailed schema of the
Mac80211 subsystem [9] with respect to managed mode.
Understanding of the information in this section is ob-
tained by manual tracing backed by the experiment dis-
cussed in Section 6.

Figure 2 shows the path (functions) taken by a wireless
packet from user space to the driver. These functions
correspond to handling packets when the sending interface
operates in managed mode.

A packet is originated by a user space application and
sent to the kernel. The packet then passes through various
OSI layers [10] of the kernel stack to add layer specific
information. Packets are carried within a data structure
called skb (socket buffer) [11] and are passed onto every
layer in the kernel.

All the relevant information required for the higher
layer OSI headers [10] is added to the skb by the
Linux Kernel. The kernel then hands the skb to the
Mac80211 subsystem along with the information of
the interface via which the packet must be sent (out-

Figure 2: Mac80211 Control Flow

bound). This is achieved by a registered callback function
(ndo_start_xmit()).

The corresponding registered function for
ndo_start_xmit() with respect to managed mode
is ieee80211_subif_start_xmit(). This function is
responsible for the actual MAC layer processing and
adding MAC and PHY information into the skb. After
the required information is filled in, it is passed onto the
ieee80211_xmit() function which handles the adjustment
of skb headroom and sets the QoS header, if required.
The skb is then passed onto the ieee80211_tx() function.
Every interface has its own transmission (TX) queue.
In order to transmit the skb into the correct interface,
corresponding transmission queue of the outbound
interface is selected. The skb is put into the outbound
interface’s TX queue. The skb will be dequeued and sent
to the final point in the Mac80211 subsystem (drv_tx())
by a kernel tasklet named ieee80211_tx_pending. At
the end of drv_tx() the control is transferred from the
Mac80211 subsystem to the wireless driver.

ieee802111_subif_start_xmit

The majority of the MAC layer processing happens
within the ieee80211_subif_start_xmit() function. Figure 3
shows the detailed flow diagram of control points in this
function. The Mac80211 subsystem maintains a hash table
with a list of known stations connected to the local device.
The initial step is to retrieve the target station (STA) node
from the hash using the target address from the skb data
structure. In managed mode, various parameters must be
verified to retrieve the target station node. It is checked if
the target station is a TDLS peer to the local device. If it
is a TDLS peer, then more checks are done to verify if the
target station is an authenticated peer to send or receive
data to/from the local device. If all the above conditions
are satisfied, the station node is retrieved with target mac
address as the key to the hash table. If the STA node is
found successfully, the skb is attempted to be sent via a

Seminar IITM SS 21,
Network Architectures and Services, November 2021 54 doi: 10.2313/NET-2022-01-1_11

Figure 3: Flow Diagram of ieee80211_subif_start_xmit
function

relatively faster execution path, called the fast_xmit path
[?]. This is explained in detail in Section 5.

If the station node is not found in the hash table or the
skb could not be sent via the fast_xmit path, then the skb
takes regular slow path where detailed checks are made
before sending the packet out through the interface. In this
path, checks to verify if the skb must undergo Generic
Segmentation Offloading (GSO) [12] is performed. GSO
is a software-based technique to perform packet segmen-
tation which is offloaded by wireless cards to drivers. If
a skb is subject to GSO, then it will be segmented into
multiple skbs based on the MSS segment size provided
by the wireless card using gso_size config parameter. The
segments will then be transmitted onto the interface.

If a skb does not require GSO, the skb must undergo
linearization which is a process in which, a paged skb is
converted to a linear skb [11]. A paged skb is used when
the data that needs to be sent is larger than the MSS.
One predominant use case of a paged skb is when a file
system file content needs to be sent over a socket. Once,
the skb is linearized, it is checked if the wireless card
has offloaded the checksum [13] operation to the driver.
The flag CHECKSUM_PARTIAL specifies if checksum
needs to be verified in the software. If the flag is set,
then the transport header offset is adjusted such that there
is enough space for the checksum to be inserted. The
checksum is calculated and copied into the skb after
the header size is modified. With this, all the necessary
processing is done and the TX statistics are updated for
TX packet count and TX byte count for the interface. The
skb is then sent to the ieee80211_xmit() function which
is explained above.

5. Fast Transmit Path

This section discusses one of the interesting features of
the Mac80211 subsystem - Fast Transmit Path [14]. The
understanding of information provided in this section is
based on manual code analysis with the open-source Linux

Figure 4: Flow Diagram of Fast Transmit Path

distribution [8]. The Fast Transmit feature requires support
from hardware. Figure 4 shows the list of functions a
packet takes in Fast Transmit mode.

Fast Transmit is used as an optimization technique so
that packets do not need to go through a long list of checks
as discussed in Section 4. Before a packet is sent for fur-
ther processing, the function ieee80211_check_fast_xmit()
checks if the target station and the local device’s un-
derlying wireless card provide Fast Transmit support in
their hardware. If Fast Transmit is possible, further checks
to determine if the target station is an authorized peer
are done to proceed with Fast Transmit. Once these
checks are passed successfully, the 802.11 header and
other information for packet processing is cached inside
the STA node data structure, which is required during
TX packet processing. This function is called whenever
a new station is added or any state change happens at
the station. Explicit calls to this function must be made
to reset the information in case the fast_xmit path is no
longer applicable for the station.

During TX packet processing, the STA node retrived
from hash table is verified for the fast_xmit information. If
the information exists (not NULL), then the skb is capable
to be sent via the fast_xmit path, else the skb follows
the regular path as discussed in Section 4. Once the skb
enters the fast_xmit path, the protocol of the packet is
checked. If the skb is a Wi-Fi Status message, then the
skb is sent to be processed via the regular path, else it is
further processed as a Fast Transmit packet.

The final packet is constructed using the previously
cached 802.11 header information. Once the packet is
ready to be sent out of the interface, a TX queue slot for
the outbound interface is fetched and the packet is put into
the queue. As discussed earlier, the ieee80211_tx_pending
tasklet takes care of dequeuing the skb and passing it onto
the driver.

6. Packet Tracing with Kernel Logs

We performed an experiment to trace IEEE802.11
packets passing through the Mac80211 subsystem in the

Seminar IITM SS 21,
Network Architectures and Services, November 2021 55 doi: 10.2313/NET-2022-01-1_11

Linux Kernel. Figure 5 shows the setup used for the
experiment. The setup includes Raspberry Pi 4 and an
external RT5572 Wireless adapter. The Raspberry Pi 4 is
configured as an ethernet backhaul extender. A backhaul
is an interface through which a device can connect to
another existing network. This means that the Raspberry
Pi 4 is now acting as a bridged wireless access point within
our already existing local Ethernet network. The external
RT5572 Wireless adapter is attached to the Raspberry Pi
4 and is considered as the Access Point in our experiment.
The backhaul interface of the Raspberry Pi 4 is connected
to a D-Link Router. We use an Android mobile phone
as our client device which is connected to the RT5572
wireless adapter.

Figure 5: Experimental Setup

Explicit kernel logs were added to the open source
Mac80211 subsytem source code to help us trace the
packets within the Linux Kernel. We sent ICMP echo
messages [15] from the Raspberry Pi to the Android
phone. Figure 6 shows a sample trace captured during the
experiment. The trace shows list of functions traversed by
a single IEEE802.11 TX packet from the Raspberry Pi 4.

Figure 6: Packet Trace

As first step discussed in Section 4, the kernel hands
over the TX packet to mac80211 subsytem. Then check to
find if the target station is available in the cached memory
(hash table) is done. The kernel log "Found RA STA"
denotes that the station is already known to the local
device and its information is available in the hash table.
Now, the Mac80211 subsystem checks if the packet can
take Fast Transmit path. Both the RT5572 adapter and the
client device did not exhibit support for Fast Transmit.
Hence the kernel log "No Hardware Fast Xmit support"
appears in our trace. Hence, The Tx packet follows the
regular slow path.

The next step is to check if the hardware has offloaded
segmentation to the driver. The RT5572 adapter takes care
of segmentation in the hardware and hence GSO path is
not triggered. Alternately, the skb undergoes linearization.
We introduced kernel logs to find if the Mac80211 sub-
system is responsible for handling checksum. Since those
logs did not appear in our packet trace, it is understood
that the hardware takes care of calculating checksum
before sending the packet into the network. In the final
step of processing, the TX statistics are updated for the
TX packet which is seen from the log "TX stats updated".
From this point, the underlying IEEE802.11 device driver
takes care of sending the packet to the target station.

The prepared skb is enqueued in the TX queue of the
outbound interface by the device driver. After this, the
tasket handler discussed in Section 4 dequeues the skb

and transmits the packet onto the interface which is seen
in the packet trace. With this the entire lifetime of a packet
within the Mac80211 subsystem is traced.

7. Conclusion and Future Work

This paper provides a detailed walkthrough of the
Mac80211 subsystem and its architecture focussing on
packet processing in managed mode of operation. This
papers also analyses the fast_xmit mode of transmission
which helps in drastically reducing the per-packet pro-
cessing overhead. An experiment to back the information
obtained from manual tracing is performed and the com-
plete packet trace is presented. Future work can include
finding possible areas of optimizations and analysing the
remaining features of the mac80211 subsystem in order to
create a simpler and a pluggable version of the mac80211
subsystem. Furthermore, the IEEE802.11 driver can be
examined and a detailed study can be made on how
packets traverse through wireless drivers.

References

[1] G. Hiertz, T. Denteneer, L. Stibor, Y. Zang, X. Costa-Pérez, and
B. Walke, “The ieee 802.11 universe,” Communications Magazine,
IEEE, vol. 48, pp. 62 – 70, 02 2010.

[2] “Monitor mode,” https://en.wikipedia.org/wiki/Monitor_mode,
[Online: accessed 06-June-2021].

[3] M. Vipin and S. Srikanth, “Analysis of open source drivers for
ieee 802.11 wlans,” in 2010 International Conference on Wireless
Communication and Sensor Computing (ICWCSC), 2010, pp. 1–5.

[4] V. Nikolyenko and L. Libman, “Coop80211: Implementation and
evaluation of a softmac-based linux kernel module for coopera-
tive retransmission,” in 2011 IEEE Wireless Communications and
Networking Conference, 2011, pp. 239–244.

[5] D. C. Mur, “Linux wi-fi open source drivers,” http://www.
campsmur.cat/files/mac80211_intro.pdf, [Online: accessed 06-
June-2021].

[6] J. M. Berg, “Mac80211 overview,” https://wireless.wiki.kernel.org/
_media/en/developers/documentation/mac80211.pdf, 2009, [On-
line: accessed 06-June-2021].

[7] “Linux 802.11 driver developer’s guide,” https://www.kernel.org/
doc/html/v4.12/driver-api/80211/index.html, [Online: accessed 06-
June-2021].

[8] “Linux kernel developer documentation,” https://wireless.wiki.
kernel.org/en/developers/documentation, [Online: accessed 06-
June-2021].

[9] P. Salvador, S. Paris, C. Pisa, P. Patras, Y. Grunenberger, X. Perez-
Costa, and J. Gozdecki, “A modular, flexible and virtualizable
framework for ieee 802.11,” in 2012 Future Network Mobile Sum-
mit (FutureNetw), 2012, pp. 1–8.

[10] J. Day and H. Zimmermann, “The osi reference model,” Proceed-
ings of the IEEE, vol. 71, no. 12, pp. 1334–1340, 1983.

[11] “How skbs work,” http://vger.kernel.org/~davem/skb_data.html,
[Online: accessed 06-June-2021].

[12] “Segmentation offloads in the linux networking stack,”
https://www.kernel.org/doc/Documentation/networking/
segmentation-offloads.txt, [Online: accessed 06-June-2021].

[13] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums
for embedded control networks,” IEEE Transactions on Depend-
able and Secure Computing, vol. 6, no. 1, pp. 59–72, 2009.

[14] “Fast transmit,” https://elixir.bootlin.com/linux/latest/source/net/
mac80211/tx.c#L2908, [Online: accessed 06-June-2021].

[15] “Internet Control Message Protocol,” RFC 792, Sep. 1981.
[Online]. Available: https://rfc-editor.org/rfc/rfc792.txt

Seminar IITM SS 21,
Network Architectures and Services, November 2021 56 doi: 10.2313/NET-2022-01-1_11

TCP Congestion Control Fingerprinting

Kevin Ploch, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: kevin.ploch@tum.de, jaeger@net.in.tum.de

Abstract—In order to make judgements on the spread of
certain congestion control algorithms a way to fingerprint
the algorithm of a host is needed. This can be done with
congestion control identification (CCI) algorithms. This work
presents the general approach of such an algorithm and
summarizes possible categorizations for CCI. It presents
Congestion Avoidance Algorithm Identification (CAAI) as an
active and DeePCCI as a passive example. In an accuracy
evaluation over a WAN connection these algorithms are
compared to each other and to a more recent approach
from 2020, Inspector Gadget (IG), which includes further
optimizations. IG shows near perfect accuracy, DeePCCIs
and CAAIs accuracies are rather humble, former with 90-
92% and latter with 41-94%, and to conclude we explore
how these results come to be.

Index Terms—congestion control, congestion control identi-
fication

1. Introduction

The biggest share of Internet traffic is under control of
the Transmission Control Protocol (TCP) which combines
concepts to provide properties like reliable and ordered
data delivery or management of the sending-rate. The most
performance significant part in data transmissions is the
latter, namely Congestion Control (CC). Historically many
TCP CC algorithms have been developed trying to find the
best balance between bandwidth utilization and congestion
in the network. While TCP Reno or TCP Cubic have been
a wide-spread standard, whether now or in the past, newer
algorithms like TCP BBR make their way into modern
operating systems. [1, Section 1] [2]

To be able to make judgements on the current
state of the Internet in topics like TCP performance,
especially inter-algorithm-performance, or stability it
is important to know the widespread adoption of each
specific CC algorithm. Further examples that depend on
this knowledge are topics like buffer sizing of routers,
active queue management, fairness tuning of new CC
variants or the creation of realistic traffic generators.
To gather this needed, wide-spread deployment data we
need a way to fingerprint the CC algorithm of a single
host, leading us into the realm of Congestion Control
identification (CCI) algorithms. [2], [3]

This paper aims to give an overview on current TCP CCI
approaches. Section 2 revises important CC terminologies
and differentiates the most important CC algorithms. Sec-
tion 3 explains the general approach of a CCI method

and presents different categories for them. Section 3.1 and
Section 3.2 explain two unique approaches to CCI. Sec-
tion 3.3 presents a more recent work with optimizations
based on the two presented previous methods. Section 4
evaluates the accuracy of the three approaches and aims
to explain the differences and pitfalls.

2. Background

Transport protocols determine the sending rate and
have to balance between full utilization of network
ressources and fairness among connections sharing a bot-
tleneck link. Uncontrolled flows that exceed the speed at
which a router can process packets leads to the build-
up of packet queues and finally to dropped packets as the
routers memory is exceeded [1, Section 2]. To accomplish
this balance the protocol has to dynamically test for avail-
able bandwidth and congestion. There are 3 types of CC
algorithms: delay-based (e.g. TCP Vegas), loss-based (e.g.
TCP Cubic) and hybrid forms (BBR-v2) [4], [5]. Delay-
based algorithms change their sending rate according to
the delay of the connection, similarly loss-based change
theirs in case of packet loss. [1], [5]

Every packet a sender transmits is acknowledged by
the receiver with acknowledgement packets (ACK). The
number of packets a sender is able to send unacknowl-
edged in each round-trip time (RTT) is called the con-
gestion window (cwnd). Every CC has three phases: 1)
slow start where the available bandwidth is estimated 2) a
steady phase aka congestion avoidance during which we
roughly stay at our calculated bandwidth limit and probe
for more slowly; and 3) loss recovery where CC reacts to
packet loss. [4], [5]

The value of the slow start threshold (ssthresh) deter-
mines the change from slow start to congestion avoidance.
In case of a loss event it is usually changed accord-
ing to sstresh = β · loss_cwnd where β denotes the
Multiplicative Decrease Parameter and loss_cwnd is the
cwnd right before a loss event or timeout. The window
growth function g(·) defines how TCP grows cwnd in
the congestion avoidance state and it makes certain CC
algorithms very recognizable, e.g. TCP Reno with linear
growth or TCP Cubic with a cubic function to have a
very sensitive growth around the loss_cwnd and a rapid
one otherwise. [2], [4]

3. Congestion Control Identification

Table 1 lists a variety of CCI methods available to this
date. Because reviewing every single one in detail would

Seminar IITM SS 21,
Network Architectures and Services, November 2021 57 doi: 10.2313/NET-2022-01-1_12

TABLE 1: Congestion Control Identification Overview

Method Approach Description Included TCPs Year

On Inferring TCP Behaviour (TBIT)
[6]

active trace congestion window to a given
order of events, differentiate the 5 tcp
methods based on this

4 (Tahoe, Reno, NewReno, TCP with-
out Retransmit)

2001

Identification of different TCP ver-
sions based on Cluster Analysis [7]

passive collect packets, extract features of
cwnd based on a RTT estimate, cluster
these to identify two competing CC
variants

any 2 competing out of 14 (Reno,
Cubic, BIC, CTCP, HSTCP, H-TCP,
TCP Hybla, Scalable, Illinois, YeAH,
Vegas, Veno, Westwood)

2009

TCP Congestion Control Avoidance
Algorithm Identification (CAAI) [2]

active extracts multiplicative-decrease pa-
rameter and window growth function,
use machine learning to counter net-
work conditions

14 (Reno, CTCP, BIC, Cubic,
HSTCP, HTCP, HYBLA, ILLINOIS,
LP, STCP, VEGAS, VENO,
WESTWOOD+, YEAH)

2014

Identification of TCP Congestion Con-
trol Algorithms from Unidirectional
Packet Traces [8]

passive uses unidirectional packet trace, alge-
braic approach, approximate the whole
SEQ-number to Time function, plot
derivatives to differentiate TCP Con-
gestion Control

5 (RENO, CUBIC, Hamilton TCP, Ve-
gas, Veno)

2018

The Great Internet TCP Congestion
Control Census (Gordon) [9]

active similar to CAAI, different cwnd esti-
mation algorithm

13 (BBR, Cubic, NewReno, BIC,
HTCP, Scalable, Illinois, CTCP,
YeAH, Vegas, Veno, Westwood,
HSTCP)

2019

DeePCCI: Deep Learning based Pas-
sive Congestion Control Identification
[3]

passive only metric is packet arrival time,
machine learning based classification
with additional TCP Pacing differenta-
tion to increase identification accu-
racy, tests only in testbed

paper focused on BBR, CUBIC,
RENO but trainable on any variant

2019

Inspector Gadget: A Framework for
Inferring TCP Congestion Control and
Protocol Configurations [5]

active similar to CAAI with optimizations,
especially improved network environ-
ments with changing RTT, Window
Emptying and Sequence Check opti-
mizations

12 (BBR, Cubic, Reno, BIC, hstcp,
htcp, illinois, scalable, vegas, veno,
westwood, yeah)

2020

go way beyond the scope of this work we are going to
look at the general procedure of a CCI method and later
dive into specific examples in Section 3.1 (CAAI) and 3.2
(DeePCCI). CAAI is from 2014 and while not being the
newest active approach (see IG [5] and Gordon [9]), it
gives a good understanding of the methodology. It’s also
based on a very early active approach in form of TBIT [6]
from 2001. DeePCCI was chosen for pioneering an un-
convential approach: ignoring TCP mechanics altogether
and focusing only on packet arrival time.

Every CCI method follows a rough draft. First we
need a way to get to the packet trace of the host we are
interested in. Then we define features which enable us
to differentiate between CC algorithms. These features
are extracted from the packet trace and saved into a
datastructure. Last but not least we match this processed
representation of a host to some prepared data of each CC
to classify the target. For this general procedure this work
borrows the terminologies of Trace Gathering, Feature
Extraction and Algorithm Classification from CAAI [2].

CCI methods can be generally categorized in
two ways: TCP domain-dependent vs. TCP domain-
independent and active vs. passive approaches. The first
distinction differentiates between CCI methods that re-
quire knowledge of TCP in their implementation as they
differentiate CC variants on subtle differences and meth-
ods that do not need knowledge of TCPs inner workings.
Most methods are TCP domain-dependent but DeePCCI
is a pioneer for the latter approach. The second distinction
can be described in the following: Active approaches

directly open up connections to a host to gain knowledge
on the used CC by requesting data, manipulating the
communication and observing the behaviour on the other
side. Passive approaches do not interact with the observed
host in any way. A host can be evaluated based on packet
traces only, thus rendering this approach passive. One big
advantage with passive approaches is the ability to work
on real-world traffic. Packet traces could be captured on
vantage points of a network or the Internet and therefore
allow to identify alot of hosts without having to actively
contact each one of them. A smaller subdistinction of
passive methods can be made when looking at bidirec-
tional vs. unidirectional packet traces. Most methods use
bidirectional packet traces but for example Kato et al. [8]
focused on unidirectional traffic only in 2018. [3]

3.1. Congestion Avoidance Algorithm Identifica-
tion (CAAI)

CAAI is an active CCI method that is able to
distinguish 14 different TCP algorithms as table 1
shows. Specifically its design goals aim to identify most
default and non-default TCP algorithms while being
insensitive to the operating system, network conditions
and TCP components other than congestion avoidance of
a webserver.

It characterizes each TCP congestion avoidance algorithm
by two features:

• Multiplicative Decrease Parameter β

Seminar IITM SS 21,
Network Architectures and Services, November 2021 58 doi: 10.2313/NET-2022-01-1_12

• Window Growth function g(·)

The context of these variables in TCP has been explained
in Section 2.

The reasoning for these two variables lies in the fact
that different TCP algorithms have different multiplicative
decrease parameters and congestion window growth
functions. For example RENO uses β = 0.5 and a linear
growth function of g(x, loss_cwnd) = 0.5 · loss_cwnd+x
where x denotes the number of elapsed RTTs in the
congestion avoidance phase, while CUBIC uses β = 0.7
and a window growth function that not only depends on
x but also on the duration of a RTT. [2]

Trace Gathering: In step one CAAI gathers the TCP
congestion window trace of a target in two simulated net-
work environments using Linux’ netem [10] to introduce
various network conditions. To be able to differentiate 14
different TCP versions P. Yang et al. argue one needs
different network environments in terms of the RTT. They
settled for two network environments, A and B, and
defined Environment A with a static RTT of 1.0s and
Environment B with a RTT of either 0.8s or 1.0s to more
easily distinguish RTT based cwnd changes e.g. CUBIC.
These simulated environments depend on two more vari-
ables: cwnd_threshold, which sets the boundary for the
timeout to start and should be high to help distinguish
TCPs, and mss, which sets the maximum TCP segment
size of the connection and should be low to enable a higher
maximum cwnd value. For detailed reasoning of specific
values like the chosen RTT or minor problems like Slow
Start Treshold Caching on the webservers refer to [2]. The
data transmission itself is initiated with repeated HTTP
requests in form of HTTP pipelining and a tool developed
by the authors to search for the longest webpage of a
webserver to give a long enough transmission.

As in Section 2 explained, cwnd equals to the
number of packets sent in one RTT. CAAI uses this
constellation to estimate the cwnd of the target. Packets
can be assigned to a specific RTT as the RTT value is
high enough to have a bandwidth-delay-product much
larger than mss · cwnd_treshold. This leads to the packet
trace having lots of packets at the start of each RTT
and then a gap to the next one. Further CAAI uses
the highest received sequence number in one emulated
RTT to counter lost packets that would impact the cwnd
estimation. [2]

Feature Extraction: To extract the two features from
the trace CAAI first determines the boundary RTT that
marks the change from slow start to congestion avoid-
ance. It then extracts β with β = ws/loss_cwnd where
ws is the congestion window size at the boundary RTT
and loss_cwnd denotes the window size right before the
timeout. The ssthresh formula from section 2 was essen-
tially solved after β. The second feature, window growth
function g(·), is extracted from the congestion window
sizes after the boundary RTT using two measuring points
ws+4 − ws+1 and ws+9 − ws+1. The substraction allows
values independent of loss_cwnd, e.g. RENO would have
a value of ws+4−ws+1 = 3 as it features a linear growth.
Two points are enough to distinguish the every CC, Yang
et al. argue. The values from both environments are then

saved into one feature vector.
Algorithm Classification: The problem with the gathered
data is its dependence on the congestion in the network
at the time of the trace gathering. As a countermeasure
CAAI employs a machine learning algorithm trained on
the feature vectors of the 14 different TCP variants in
different network conditions. CAAI uses random forest
in this regard as it achieved the highest classification
accuracy among the tested methods. [2]

3.2. DeePCCI

DeepCCI is a passive and TCP domain-independent
approach. Existing CCI methods have weaknesses like
1) complexity when adding new CC algorithms as
detailed knowledge about parameters and configuration
are needed, 2) assumptions of missing extern influences
like TCP pacing or static parameters, and 3) reliablity on
parsable TCP header information. One example outside
of TCP itself for problem 1) and 3) could be QUIC
which moves CC to the userspace and implements fully
encrypted transports. To counteract assumptions like these
Sander et al. developed DeePCCI which uses packet
arrival time as its only feature to distinguish CC variants
and therefore stays flexible. DeePCCI uses the packet
arrival time as any CC algorithm controls the packet
flow in terms of amount and timing Sander et al. argue. [3]

Packet traces do not need to be gathered by the tool
itself in passive methods. The packets in the trace are
sorted into same-sized bins according to their arrival time
to build a histogram X = [x0, ..., xt] of packet arrivals
with equidistant timesteps. This histogram is then fed into
a deep neural network consisting of a convolutional neural
network (CNN) and a long short-term memory (LSTM)
part. The former is regarded as the feature extraction phase
while the latter builds up memory depending on previous
behaviour and is needed to identify varying length traffic
flows as they appear in the real world. After the LSTM
layer the neural network predictions are applied for CC
classification and classification whether TCP pacing was
present in the trace to help in CC classification.

The testbed to train the neural network consists of
two main topologies with different network conditions in
terms of amount of TCP senders, link latency, bottleneck
link bandwidth and bottleneck queue sizes. A bottleneck
link is central for changing these variables. Topology 1
is a single-host network with one TCP sender connected
to a router which is connected via a bottleneck link to
another router followed by the receiving host. Topology
2 is a little more complex with 3 hosts on each side. The
training data in the latter topology consists of all possible
combinations of the 3 CC algorithms (RENO, CUBIC,
BBRv1) that DeePCCI focused on. In each setting
traffic is captured before and after the bottleneck link.
If other senders exist they start sending 2 s prior to the
sender we are interested in and it sends traffic for 60 s. [3]

The previously mentioned variables and other mea-
surements decisions have an impact on the distinction
of CC which will be discussed now. Bandwidth: DeeP-
CCI was able to distinguish delay-based (BBRv1) and

Seminar IITM SS 21,
Network Architectures and Services, November 2021 59 doi: 10.2313/NET-2022-01-1_12

loss-based CC very well for bandwidths above 10 Mbps.
Bandwidths ≥ 10 Mbps and delays ≥ 5 ms resulted in F1
scores above 90% in the multi-host scenarios and with
F1 scores above 55% in the more unrealistic scenario
with one TCP sender. By including smaller bandwidths
also, the minimum F1 scores drop to 55% (multi-host)
and 40% (single-host) respectively. As a general trend
we see that larger bandwidths, larger delays and multiple
simultaneous traffic flows are beneficial for the result.

A higher bandwidth results in a higher maximum con-
gestion window and therefore more steps of e.g. CUBIC
are executed leading to an easier distinction from linear
behavior as with RENO. Delay: One effect of the delay
can be accounted to the bin size. A low delay makes it
harder to distinguish CC variants as the change in packet
arrival time would be too fast for a distinguishable differ-
ence in the histogram bin sub-sampling. The CCs would
have a less unique histogram composition. It also influ-
ences the decision whether TCP pacing was used, with a
low delay too many packets fall into the same bin, with or
without pacing, impacting the decision negatively. Lastly,
the multi-host scenario increases the queuing delays and
leads to more congestion and therefore a competition for
packets in the queue. This effect counteracts the effect
of a low bandwidth and delay as 1) the delay increases
with competing flow and 2) competing flows influence the
cwnd of our target host, identifying his CC easier as we
are not that dependant on alot of steps as explained before.
[3]

3.3. Inspector Gadget

Inspector Gadget (IG) is a more recent work from
2020 that aims to identify a whole webserver’s network
stack configuration ranging from new default values like
initial window size to whole new CC protocols. Its ap-
proach is active, TCP domain-dependent and it evalu-
ates self-captured, bidirectional packet traces. The work
additionally surveyed individual network operators from
six distinct content delivery networks to find out about
their approach to tuning their network stacks and the root
cause of configuration heterogenity. Also the tool itself
was tested on the Alexa top 5k websites and the work
discussed TCP related anomalies in form of a measure-
ment study of different Linux implementations in the wild.
While the work of IG covers alot of topics, in the context
of this paper we are mostly interested in CCI itself which
is covered in IV.B: Behaviour Parser Module.

To seperate IG from the two previously shown
methods we first look at the differences. Unlike DeePCCI
with 3 CC algorithms, IG originally supports a broader
range of algorithms. In contrast to CAAI it’s also
interoperatable with TLS/SSL, offers more optimizations
to tackle domain-specific problems like pacing and puts
an emphasis on delay variations to fingerprint delay-based
CC algorithms. [5]

Similar to CAAI IG manipulates the RTT through
delaying ACKs, enabling a set RTT of 0.8 s. As mentioned
before it is also varied to fingerprint delay-based CC. To
inject loss-events IG, just like CCAI, provokes timeouts.
The cwnd estimation bears the first bigger change. Esti-
mating the window by counting the packets received in

Figure 1: from [5]; Comparison of CAAI, DeepCCI, In-
spector Gadget and Gordon

one RTT is prone to errors as this assumes that TCP
is synchronous and ordered. Synchronous in the sense
that at the start of a RTT the packets are sent in batch
and the same for the ACKS at the end of a RTT. Also
in the real world it can be observed that packets from
one cwnd are spread over multiple RTTs due to e.g.
pacing. Packet duplication and loss further worsen this
scenario. To capture the cwnd accurately IG deploys two
optimizations called Sequence Check (SC) and Window
Emptying (WE).

Packet reordering and duplication is a problem as
the amount of packets in-flight differs from the actual
congestion window. So instead of simply counting the
number of packets in-flight IG uses SC to account for
the TCP sequence number to identify and eliminate these
cases.

Reasons like TCP pacing could also lead to a dif-
ference between packets in-flight and the real congestion
window. Through the WE optimization ACKs are stored
and sent batched at the end of a RTT. This ensures an
empty sender window when sending the ACKs and a more
accurate representation of the CC.

The cwnd trace is stored into the vector ν with each
phase (Slow Start, Loss Recovery, Congestion Avoidance)
seperated. Similar to Congestion Avoidance Algorithm
Identification (CAAI) the values are saved as an offset,
in this case from the first cwnd of each phase. For clas-
sification a decision tree with CART algorithm classifier
was chosen. [5]

ν = (

l∑

i=1

Wi−W1,

x∑

i=1

Wl+i−Wl+1,

y∑

i=1

Ws+i−Ws+1)

(1)
As we see it is quite similar to CAAI but offers some
optimizations. How these are impacting the result will be
evaluated in section 4.

4. Evaluation

To compare these works with each other, we will first
look at the impact of the SC and WE optimization in IG.
Then we will analyse a comparison of these three CCI
methods and elaborate on the results and differences.

IG Optimizations. Excluding all improvements in IG
yields an accuracy loss of 62% in the worst case. The WE

Seminar IITM SS 21,
Network Architectures and Services, November 2021 60 doi: 10.2313/NET-2022-01-1_12

optimization had the biggest impact. Upon removal Gong
et al. observed a false-positive rate of up to 31%. As a
reminder, WE is responsible for synchronizing each RTT
through ACK batching. In its abscence the SC feature
has a higher probability to disregard packets as being
not in the current window. This inaccurate trace leads
to an inaccurate classification. Meanwhile a missing SC
optimization leads to a minor drop to 92% from 100%. [5]

Accuracy Comparison. Gong et al. compared IG
directly to CAAI, DeePCCI and Gordon, which we did not
cover in this work except shortly in the CCI overview. To
make results comparable, they extended CAAI’s unmain-
tained source code with support for HTTPS and added
a bottleneck to their setup to enable traffic capture on
both sides for DeePCCI. The comparison with DeePCCI
is somewhat restricted as it came with only 3 pre-trained
CCs in form of Cubic, Reno and BBR. The environment
itself consists of a server with the 4 CCI methods and
webservers in an AWS Cloud to provide realistic network
dynamics. The Linux traffic control tool was used to
emulate different network conditions and each CC was
fingerprinted 30 times for each network condition up to
at least 4000 packets.

The results can be seen in figure 1. IG shows almost
perfect identification across the different CC algorithms.

The re-implementation of CAAI featured accuracies
between 41% and 94%. Even more disappointing is the
poor result with major CC variants, for example BBR or
Cubic with accuracies of 78% and 64% respectively. The
reason for this may lie in the fact that CAAI emulates
only two network conditions. Gong et al. argue that these
two are not enough to capture small differences among
certain CC algorithms, for example between Veno and
Reno. In the original work of Yang et al. CAAI reached
accuracies of 96.98% in their testbed but suffered of 53%
invalid traces in Internet tests measuring 63124 popular
webservers [2]. This number exists in the fact that CAAI
could 1) not find a long enough webpage on a webserver
to keep the connection up or 2) a webserver only accepts
one or few HTTP requests in the same TCP connection
and thus leading to slow start determining most of the
data transmission [2].

Section 3.2 presented a first glance at the accuracy of
DeePCCI under different testbed variables (e.g. amount
of hosts, delay). It provides good results with accuracies
above 96% in networks with client and server within the
same area. But once WAN is introduced, as is the case
in usual connections to webservers on the Internet, the
accuracy drops to 90–92% in the tests of Gong et al. The
main reason for this limitation might be the training with
testbed generated data. Further DeePCCI might need to be
retrained for CC variants across different kernels as they
slightly differ. [5]

5. Conclusion

This work shed a light on CC fingerprinting. It re-
iterated on CC with its most important mechanics, phases
and variables, and not only gave an overview on CCI al-
gorithms, their methodology and possible categorizations
but also reviewed three concrete examples with a finishing
comparison in terms of accuracy under realistic WAN

conditions. Furthermore an overview of CCI methods in
form of table 1 has been provided.

References

[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-
Host Congestion Control for TCP,” IEEE Communications Surveys
Tutorials, vol. 12, no. 3, pp. 304–342, 2010.

[2] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP Con-
gestion Avoidance Algorithm Identification,” IEEE/ACM Transac-
tions on Networking, vol. 22, no. 4, pp. 1311–1324, 2014.

[3] C. Sander, J. Rueth, O. Hohlfeld, and K. Wehrle, “DeePCCI: Deep
Learning-Based Passive Congestion Control Identification,” pp. 37–
43, 2019.

[4] M. Allman and V. Paxson, “RFC5681—TCP Congestion Control,”
RFC, no. 5681.

[5] S. Gong, U. Naseer, and T. A. Benson, “Inspector Gadget: A
Framework for Inferring TCP Congestion Control Algorithms and
Protocol Configurations.” International Federation for Information
Processing, 2020.

[6] J. Padhye and S. Floyd, “On Inferring TCP Behavior,” SIGCOMM
Comput. Commun. Rev., vol. 31, no. 4, pp. 287–298, Aug. 2001.

[7] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP
Versions Based on Cluster Analysis,” in 2009 Proceedings of
18th International Conference on Computer Communications and
Networks, 2009, pp. 1–6.

[8] T. Kato, X. Yan, R. Yamamoto, and S. Ohzahata, “Identification of
TCP Congestion Control Algorithms from Unidirectional Packet
Traces,” in Proceedings of the 2nd International Conference on
Telecommunications and Communication Engineering, ser. ICTCE
2018. New York, NY, USA: Association for Computing Machin-
ery, 2018, pp. 22–27.

[9] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong,
“The Great Internet TCP Congestion Control Census,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019.

[10] “netem,” https://wiki.linuxfoundation.org/networking/netem, ac-
cessed: 2021-08-03.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 61 doi: 10.2313/NET-2022-01-1_12

Seminar IITM SS 21,
Network Architectures and Services, November 2021 62

Analysis of Proof of Stake flavors with regards to The Scalability Trilemma

Paul Schaaf, Filip Rezabek∗, Holger Kinkelin∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge75sab@mytum.de, frezabek@net.in.tum.de, kinkelin@net.in.tum.de

Abstract—Blockchains are a rapidly evolving area of research
and experimentation. Since Bitcoin’s introduction in 2008,
different protocols have been proposed and implemented
with the goal of improving on Bitcoin’s core feature, the
Proof of Work consensus mechanism. A critical area many
of the newer mechanisms focus on is a reduction in energy
usage, for example.

This paper presents and compares different Proof of
Stake (PoS) mechanisms – an increasingly popular alterna-
tive to Proof of Work – that have been developed in recent
years. The focus of our comparison are the mechanisms’
abilities to solve the Scalability Trilemma, that is, a consensus
mechanism’s ability to achieve decentralization, security,
and scalability. We find that Unbonded PoS is the most
decentralized mechanism but comes with vague security
assumptions. Bonded PoS is more secure at the cost of
decentralization. Lastly, Delegated PoS achieves scalability
but suffers from low decentralization and security.

Index Terms—blockchains, proof of stake, scalability
trilemma

1. Introduction

Any given blockchain is a complex distributed system
and the result of a variety of design decisions. One of the
most important considerations is a blockchain’s consensus
mechanism. In decentralized networks where each node
stores all the state (because there is no central server),
there is a need for a mechanism that allows all nodes
to come to consensus on which state changes should be
applied to the current state and in which order they should
be applied. This is so that after a state change all nodes
have saved the same state [1].

In 2008, Satoshi Nakamoto used the concept of Proof
of Work (PoW) to create Bitcoin’s consensus mechanism.
This mechanism makes nodes compete to solve hash
puzzles (which is called mining) for Bitcoin rewards and
the right to propose a specific set of changes [2].

Since then, Bitcoin’s consensus mechanism has been
criticized, mainly for its large consumption of energy
because nodes are incentivized to buy more machines as
long as the rewards outweigh the energy costs [3].

In an attempt to improve on the PoW consensus
mechanism, other mechanisms have been researched and
implemented in other blockchains. Most notably, Proof of
Stake (PoS), a mechanism that removes the advantage of
owning more machines and instead directly uses capital.
Instead of mining, it employs a randomness function to

choose the next block proposer which favors those with
more capital. While PoS does not increase the fairness of
the rewards distribution, it does come with lower energy
requirements [4].

It is the goal of this paper to provide answers to
the questions of what the subcategories of PoS are and
how they differ. In sections 2 and 3 respectively, we
present relevant background knowledge and highlight re-
lated work. Equipped with this knowledge, we compare
the different flavors in section 4. In particular, we compare
Unbonded Proof of Stake (UPoS), Bonded Proof of Stake
(BPoS), and Delegated Proof of Stake (DPoS). The focus
of this comparison is the ability of each mechanism to
solve the so-called Scalability Trilemma. The trilemma
states that it is difficult for any mechanism to achieve
scalability without sacrificing security or decentralization
[5]. It is these three properties by which we compare the
mechanisms. In section 5, we summarize our findings and
point to potential areas for future work.

2. Background

This section provides a high-level overview of how
a blockchain works, presents the Proof of Work and
Proof of Stake consensus mechanisms, and introduces the
Scalability Trilemma.

2.1. Structure and Participants in a Blockchain
System

The two main parties in a blockchain system are
the users – those that wish to send transactions – and
the nodes – those that maintain the blockchain. The
blockchain is a log that contains all the transactions that
have been committed so far. The transactions are aggre-
gated in so-called blocks. Each block has a reference to the
previous block, forming a chain of blocks (thus forming
a special form of a linked list). The blockchain is kept
as a local copy by every node because there is no central
server. The current state of the network can be computed
by replaying all transactions in the blockchain. Thus, every
transaction moves the blockchain from one state into a
different one. Using the example of cryptocurrencies, this
state might save users’ money which can be sent to other
users by submitting transactions [6, Chapter 1-2].

2.2. Consensus

In Section 2.1 we have established that all nodes
need to save an identical copy of the blockchain. Thus,

Seminar IITM SS 21,
Network Architectures and Services, November 2021 63 doi: 10.2313/NET-2022-01-1_13

when users request to send transactions, all nodes need
to agree on which of the requested transactions should
be added to the chain next and in which order, that is,
what the next block to be added to the chain should look
like. Allowing nodes to reach consensus is the goal of a
consensus mechanism. Blockchain consensus mechanisms
need to function in adversarial environments, that is, those
in which there are malicious nodes [6, Chapter 2]. In
particular, these mechanisms should be sybil-resistant, that
is, they must continue to work under the assumption that
malicious actors can create nodes at no cost [7]. Hence, a
simple direct democracy where each node represents one
vote with the winner being elected to propose the next
block does not work [6, Chapter 2].

Subsections 2.2.1 and 2.2.2 explore the PoW and PoS
mechanisms which are sybil-resistant.

2.2.1. Proof of Work. Proof of Work was first introduced
in 1993 to prevent service abuses in computer networks
[8]. It allows someone to prove they have done some
work with the verification of this proof being cheaper
than the work itself. We use Bitcoin as an example to
illustrate how PoW blockchains incorporate this concept.
All nodes in the system hold an individual block of
requested transactions that could be added to the chain
next. Each node tries to find a number – the nonce –
so that when added to its block, the block hashes to a
value smaller than a value X set by the protocol. There
is no efficient algorithm to do this, so a node can only
try different numbers (this is the Work in Proof of Work).
If a node finds such a number, it broadcasts the block.
Each node that receives it verifies the PoW (which equates
to confirming the block’s hash is smaller than X, which
can be done in constant time) and the transactions in the
block (e.g. the sender of some money must have agreed
to the transfer). If valid, a receiving node adds the block
to its local chain and starts working on the next one. This
process is called mining. The result of this mechanism is
that in regular intervals a new node is chosen to propose
the new block. Note that a node is only chosen implicitly
by finding the nonce; there is no voting taking place.

A benefit of PoW is that adding additional nodes
does not increase the likelihood of finding the nonce,
only the computing power matters. Hence, the Proof of
Work consensus mechanism is sybil-resistant. In addition,
it follows that the more distributed the computer power is
across nodes, the more decentralized - and thereby more
resistant to attacks - the network is [6, Chapter 2-4].

2.2.2. Proof of Stake. Proof of Stake is designed to be an
alternative for PoW and was first proposed in a forum post
in 2011 [9]. It works by essentially simulating the mining
process. While Bitcoin’s Proof of Work was described as
"essentially one-CPU-one-vote" in the original whitepa-
per [2] by Nakamoto, Proof of Stake maps one unit of
currency to one vote. Validators, as they are commonly
called in PoS chains, deposit the respective blockchain’s
currency (in blockchain jargon: they stake and their capital
is staked) and one validator is then chosen by a function
to propose the next block. While incorporating some form
of randomness, this function is more likely to choose a
validator with a higher stake (again, analogous to owning
more machines in PoW). One advantage of PoS over PoW

is that the amount of machines a node controls does not
increase the likelihood of being chosen as the next block
producer, leading to a drastically lower energy footprint
(about two thousand times more energy efficient in some
cases [10]) [11].

The Nothing at Stake Problem. PoS consensus
mechanisms have to deal with one issue PoW mechanisms
do not: the Nothing at Stake Problem.

In general, blockchains can fork, meaning that two
valid blocks are proposed at the same time, turning the
blockchain into a tree with the two leaves referencing the
previous block. In Proof of Work, a node chooses one
branch by devoting its computing power to finding the
nonce for the next block that references that branch’s leaf.
It could also use 30% on one branch and 70% on the
other. The main point is that a node cannot use more
than 100% of its computing power. A fork in PoW does
not alter a miner’s ability to produce blocks because the
resource securing the network (the computers) is outside
the network. One branch will likely have more computing
power supporting it and eventually all nodes switch to that
branch [6, Page 209].

The story is different in Proof of Stake, however
[12]. A validator’s likelihood to be a block producer
is influenced by their stake, that is, the amount of the
blockchain’s native currency that they have staked. This
means that the resource securing the network is part of
the blockchain itself. Hence, when a fork happens, this
resource is duplicated. Each validator wants to participate
in consensus on the branch of the fork that eventually
becomes the main branch because the rewards for partic-
ipating on the eventually abandoned branch will not be
considered real. However, because their capital is dupli-
cated, they do not have to choose like block producers in
PoW do, they can just produce blocks on both branches.
It is trivial to see that if every validator thinks like this,
there will never be a main branch because all branches
continue producing blocks. After all, from the viewpoint
of a single validator, there is no penalty for acting like this,
a penalty that would e.g. remove the validator’s funds. As
a result, the validator has nothing at stake that they could
lose if they act like described above. The reason this is a
problem is that if forks do not clear up after some time,
no consensus is reached and users of the currency cannot
be sure their transactions are final.

2.3. The Scalability Trilemma

The Scalability Trilemma states that it is incredibly
difficult for a blockchain to be scalable while staying
secure and decentralized [5]. Note that for none of these
properties there exists a single metric and a single value
for that metric to achieve the property. This means in
some cases it might be difficult to determine if one
chain is, for example, truly more decentralized than the
other. However, when comparing approaches where the
differences are big enough, employing the trilemma makes
sense. With this in mind, it is worth briefly exploring the
three properties of the trilemma and which metrics could
be used to measure them.

2.3.1. Decentralization. The rationale for decentraliza-
tion is that in a peer-to-peer protocol, allowing one actor

Seminar IITM SS 21,
Network Architectures and Services, November 2021 64 doi: 10.2313/NET-2022-01-1_13

to take sole control is likely not in the interest of the other
nodes. Two values that are often looked at are the number
of nodes in a system and how many of them are controlled
by a single entity [5].

2.3.2. Security. This property is the most obvious one.
Any serious approach towards establishing a cryptocur-
rency should come with safety guarantees. A network
should result in (possibly probabilistically) final transac-
tions and be resistant to attacks.

2.3.3. Scalability. The two metrics that are most impor-
tant when describing a blockchain’s ability to scale are
throughput and confirmation latency. That is, how many
transactions can be executed per second and how long do
users have to wait until they can consider a transaction
non-reversible [3].

3. Related Work

With Bitcoin having been invented only in 2008, 13
years ago, research specifically on blockchains is still in
the early stages (although many ideas Bitcoin and other
blockchains rely on come from well-researched distributed
systems theory and cryptography).

In addition, in this industry, much of the research
that has been done has not necessarily been published in
academic journals but in blog posts or projects’ whitepa-
pers. A relevant example: Vitalik Buterin – co-founder of
Ethereum, the 2nd biggest cryptocurrency by market cap
– reasons for Proof of Stake and how it relates to Proof of
Work, and presents other related concepts like the Nothing
at Stake Problem on his blog [13].

With that said, some more formal research has also
been carried out. Narayanan et al. provide a thorough
introduction to Bitcoin and cryptocurrencies [6]. Lepore
et al. compare PoW, PoS and Pure Proof of StakeTM

and provide a framework for future comparisons [14].
Nguyen et al. present differences between the consensus
algorithms of specific protocols (as opposed to the broader
approach we take in this paper) and analyse staking pools,
a phenomenon on PoS blockchains similar to mining pools
on the Bitcoin network [4].

4. Recent Advances in PoS

This section focuses on recent advances in PoS al-
gorithms. It first considers different approaches to solving
the Nothing at Stake problem. Then, it explores Delegated
PoS, a mechanism to increase the scalability of Proof of
Stake. It also shows how each of these adjustments moves
a protocol along the three dimensions of the Scalability
Trilemma.

4.1. Solving the Nothing at Stake Problem

This section highlights two mechanisms that aim to
solve the Nothing at Stake Problem explained in section
2.2.2 and describes the effects both mechanisms have on
the properties of the Scalability Trilemma.

4.1.1. Bonded Proof of Stake. One solution to the Noth-
ing at Stake Problem is Slashing [15]. The idea behind it
is that nodes should only be allowed to produce a block
if they have something to lose. To this end, the protocol
requires a node to agree that if someone can prove that
the node produced a block on two different forks (or more
generally, act maliciously), the node loses part of its staked
capital.

Figure 1: Example BPoS Participation Flow

Figure 2 illustrates this process, using an imaginary
BPoS protocol. First, the participant locks up capital and
begins participating in several consensus rounds - two
rounds in this example (an unrealistically low number only
chosen to conserve space). As shown in the figure, there is
a report window for each consensus round in which others
may report the node for malicious behaviour. This means
that after the staker indicates their wish to withdraw, there
is a period in which they have to wait and do not earn
any rewards. Hence, their capital is bonded. Only once
this period has passed, may they withdraw.

BPoS and the Scalability Trilemma. Bonded
Proof of Stake is an addition to regular PoS that is meant
to fend off the Nothing At Stake Problem. Hence, BPoS
increases a blockchain’s security.

However, BPoS introduces factors that might lead to
centralization. First, the requirement to lock up capital
limits the set of nodes to people that can afford to lock
up their disposable income for such a purpose. Secondly,
some PoS protocols allow users to delegate native cur-
rency (not to be confused with DPoS) to validators if they
cannot or do not want to run their own node. This way,
users can receive some of the maintenance rewards, while
the validators take a fee. Generally, it is advised to split
the delegations across multiple validators to maintain the
decentralization of the network. In networks that employ
slashing, however, users will think twice about whom they
are delegating their money to. In practice, this has led to
stake being concentrated across a few trusted companies
in many PoS protocols [16], [17].

Bonded Proof of Stake is only meant to make a
blockchain more resistant and has, in itself, no effects on
scalability.

BPoS in Practice. The most prominent protocol
using Bonded Proof of Stake is Ethereum 2.0 (ETH2)
[18]. To become a validator, a deposit of 32 ETH (worth
about $55,000 as of June 13, 2021 [19]) is required. If
a validator produces a block on two forks, it is slashed
whereas the amount slashed increases the more validators
act maliciously. If a third of validators act maliciously at
roughly the same time, their entire deposit is slashed [20],
[21].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 65 doi: 10.2313/NET-2022-01-1_13

4.1.2. Unbonded Proof of Stake. Another way to ap-
proach the Nothing at Stake problem is to bypass it by
using different assumptions. The most important one is
that the average member of society is virtuous; in par-
ticular, they do not wish to hurt society or its monetary
system. There may be parts of society that act maliciously
but that part is small in any functioning society. Thus,
assuming that the node distribution in a blockchain resem-
bles society, most nodes will not produce blocks on two
different forks or be bribed to do so because this would
hurt the blockchain’s health. Hence, there is no need to
lock up capital and punish bad behavior because it will
never happen on a scale large enough to affect the network
anyway [22], [23].

UPoS and the Scalability Trilemma. UPoS
moves the protocol using it further towards decentraliza-
tion because there is no lockup of capital. However, it
relies on more assumptions than Bonded Proof of Stake,
mainly that the average member of a functional society is
virtuous and that a blockchain’s node distribution resem-
bles society. Especially the latter assumption is debatable
because in a public UPoS blockchain system, nodes are
anonymous and there are no punishments, unlike most
human societies. Open questions like these make it impos-
sible to give a clear answer on the mechanism’s security
for now.

Analogous to BPoS, UPoS, in itself, does not affect
scalability.

UPoS in Practice. Algorand is a blockchain using
a mechanism called Pure Proof of Stake™ (PPoS) [22]–
[24]. PPoS does not require any lockup of capital. How-
ever, available capital is still used to grant proportional
voting power to nodes in the network. Each round, a
chosen node’s block is voted on by random committees of
nodes. Using a subset of all nodes to add the next block
increases efficiency. The random composition of these
committees makes it highly likely that they resemble the
overall network. To find a node’s role for the creation of
the next block (e.g. block proposer or committee member),
it executes a local verifiable random function that requires
no communication with other nodes. This can result in
multiple nodes proposing a block. However, only the block
with the highest priority (which it is more likely to have
the more of the native currency the proposers owns) will
be accepted by the committee. This results in nodes only
having a single block to vote on which they do if it is
valid and they are honest.

4.2. Delegated Proof of Stake

Delegated Proof of Stake is a consensus mechanism
that combines PoS with a governance system [25]. Its
goal is to increase a PoS blockchain’s scalability. Its main
innovation is that it only allows a fixed number of repre-
sentative nodes to participate in consensus. With only a
small number of nodes required to come to consensus, the
communication overhead drops and consensus is reached
faster.

DPoS consists of two steps. First, an election takes
place to determine the representative nodes. All nodes can
participate and they use the blockchain’s native currency
to vote. From the election onwards, the blockchain may
use another PoS mechanism to let the elected nodes come

to consensus for several blocks after which a new election
takes place. Hence, this mechanism has similarities to a
representative democracy.

Figure 2: Example Delegated Proof of Stake

Figure 2 shows an imaginary DPoS protocol where
an election happens every 7 rounds. Important to note,
the election round takes longer than the consensus rounds
because it has more participants.

DPoS and the Scalability Trilemma. DPoS pro-
vides a fixed and low number of consensus nodes, thereby
increasing a blockchain’s ability to scale. However, this
benefit comes at the cost of decentralization and security.
It is trivial that any system in which a small, fixed number
of nodes have all the control is less decentralized than
a system in which control is spread across an unlimited
number of nodes. In addition, even if the elected nodes
are not malicious, attacking a low, fixed number of nodes
is easier than attacking a large number of nodes that are
possibly not known in advance.

DPoS in practice. This paragraph briefly show-
cases the best known DPoS blockchain: EOS [26] (this
is indeed its name, not an abbreviation). In EOS, a new
block is produced by one of 21 consensus nodes every
0.5 seconds. Next to the 21 consensus nodes that produce
blocks, there are about 530 other nodes on standby that
could be elected as of June 15, 2021. The consensus nodes
receive EOS (the EOS blockchain’s native currency) as a
reward for maintaining the system. The approximately 40
nodes on standby with the highest number of votes also
receive rewards, the others do not. A new election for the
consensus nodes happens every 126 blocks. Consensus
nodes use the asynchronous Byzantine Fault Tolerance
(aBFT) consensus algorithm which ensures transaction
finality after 1 second. The maximum observed transac-
tions per second to date on EOS is about 4000 [27]. This
example demonstrates that EOS is indeed more scalable
than, for instance, Bitcoin and Ethereum as of June 15,
2021 (with about 7 and 15 tps, respectively [28]). How-
ever, EOS has received some criticism regarding malicious
behavior by its consensus nodes. In particular, allegations
of vote buying (a consensus node bribes token holders to
vote for it) and mutual voting (consensus nodes with large
amounts of EOS agree to vote for each other to stay in
power) have been made public [29], [30].

5. Conclusion and Future Work

In this paper, we have presented and compared dif-
ferent flavors of the Proof of Stake consensus mecha-
nism with regards to their ability to solve the Scalability
Trilemma.

In sections 1 and 2 we motivated the need for con-
sensus mechanisms, which allow nodes in a distributed
system to agree on state changes. We then presented
two broad categories of consensus mechanisms, the Proof
of Work mechanism – employing computing power to

Seminar IITM SS 21,
Network Architectures and Services, November 2021 66 doi: 10.2313/NET-2022-01-1_13

reach consensus – and the Proof of Stake mechanism –
employing capital to reach consensus, thereby achieving
a lower energy footprint.

In section 4 we compared flavors of the Proof of Stake
consensus mechanism. The metrics of the comparison
were the three properties of the Scalability Trilemma. The
summarized findings can be found in table 1.

Mechanism Scalability Decentralization Security
BPoS 0 - +
UPoS 0 0 0
DPoS + - -

TABLE 1: Comparison of PoS flavors,
0 =∧ base case, + =∧ increase, - =∧ decrease

UPoS is used as the base case from which the other
two are compared in the table because as we have shown
it is the mechanism which is the easiest to achieve – it
only requires a change of assumptions. We have found that
BPoS alone does not offer any scalability improvements
over UPoS whereas DPoS does, at the cost of both decen-
tralization and security. Punishable capital requirements in
BPoS increase security at the cost of decentralization. An
important takeaway from this comparison is that none of
the presented flavors can satisfy all three properties of the
Scalability Trilemma.

At this point, it is important to mention, however,
that these three flavors represent three sets of mechanisms
with each set containing blockchains that still differ sig-
nificantly. In addition, while the two sets of BPoS and
UPoS mechanisms are mutually exclusive, BPoS/UPoS
and DPoS are not. Hence,one should, for example, not
conclude that a blockchain using UPoS cannot scale.
A mechanism that is only in the UPoS set may still
scale by employing other technologies but this increase
in scalability is not caused by UPoS itself. One such
example is Algorand, discussed in section 4.1.2, which
increases scalability through short-lived stake-weighted
random committees (as opposed to elected longer-lived
ones in DPoS).

As a result, comparing these broad categories in a
vacuum is only the tip of the iceberg. A more practical
comparison in the future might compare how these mech-
anisms are used in conjunction with other technologies in
different protocols. In addition, a more holistic analysis
would also include innovations that are above the protocol
level. In BPoS, for example, there exists the concept of
Liquid Staking on the application layer. It is meant to
alleviate the problems with locked-up capital by allow-
ing stakers to withdraw staked capital immediately for a
fee [31].

References

[1] “A Survey on Consensus Mechanisms and Mining Strategy Man-
agement in Blockchain Networks,” IEEE Access, vol. 7, pp.
22 328–22 370.

[2] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
Accessed: 15/05/2021. [Online]. Available: https://bitcoin.org/
bitcoin.pdf

[3] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to Scalability
of Blockchain: A Survey,” IEEE Access, vol. 8, pp. 16 440 – 16 455,
Jan. 2020.

[4] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T.
Nguyen, and E. Dutkiewicz, “Proof-of-Stake Consensus Mecha-
nisms for Future Blockchain Networks: Fundamentals, Applica-
tions and Opportunities,” IEEE Access, vol. 7, pp. 85 727–85 745,
2019.

[5] A. Altarawneh, T. Herschberg, S. Medury, F. Kandah, and A. Skjel-
lum, “Buterin’s Scalability Trilemma viewed through a State-
change-based Classification for Common Consensus Algorithms.”
IEEE, 2020.

[6] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies: A Comprehensive Intro-
duction. Princeton University Press, 2016.

[7] B. N. Levine, C. Shields, and N. Boris Margolin, “A Survey of
Solutions to the Sybil Attack,” 2005.

[8] C. Dwork and M. Naor, “Pricing via Processing or Combatting
Junk Mail,” E. F. Brickell, Ed. Springer-Verlag, 1992, p. 139–147.

[9] QuantumMechanic. Proof of stake instead of proof of work.
Accessed: 15/05/2021. [Online]. Available: https://bitcointalk.org/
index.php?topic=27787.0

[10] A country’s worth of power, no more! [Online]. Available:
https://blog.ethereum.org/2021/05/18/country-power-no-more/

[11] F. Saleh, “Blockchain Without Waste: Proof-of-Stake,” Review of
Financial Studies, vol. 34, pp. 1156–1190, 2021.

[12] V. Buterin. (2014) On Stake. Accessed: 15/05/2021. [Online].
Available: https://blog.ethereum.org/2014/07/05/stake/

[13] ——. Accessed: 06/06/2021. [Online]. Available: https://vitalik.ca/

[14] C. Lepore, M. Ceria, A. Visconti, U. P. Rao, K. A. Shah, and
L. Zanolini, “A Survey on Blockchain Consensus with a Perfor-
mance Comparison of PoW, PoS and Pure PoS,” mathematics,
vol. 8, 2020.

[15] V. Buterin. (2014) Slasher: A Punitive Proof-of-Stake Algorithm.
Accessed: 15/05/2021. [Online]. Available: https://blog.ethereum.
org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/

[16] Cosmos Validators Leaderboard. Accessed: 13/06/2021. [Online].
Available: https://web.archive.org/web/20210613103151if_/https://
cosmos.fish/leaderboard/all

[17] Eth1 Deposit Addresses. Accessed: 13/06/2021. [On-
line]. Available: https://web.archive.org/web/20210613103156/
https://beaconcha.in/charts/deposits_distribution

[18] eth2. Accessed: 15/05/2021. [Online]. Available: https://ethereum.
org/en/eth2/

[19] Ethereum USD Historical Data. [Online]. Available: https://www.
coingecko.com/en/coins/ethereum/historical_data/usd#panel

[20] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,”
2017.

[21] Serenity design rationale. Accessed: 13/06/2021.
[Online]. Available: https://web.archive.org/web/
20210613112919/https://notes.ethereum.org/@vbuterin/
rkhCgQteN#Slashing-and-anti-correlation-penalties

[22] Various questions about the algorand blockchain. Accessed:
05/06/2021. [Online]. Available: https://medium.com/algorand/
various-questions-about-the-algorand-blockchain-ef8bf719f1f

[23] Silvio micali’s lecture on algorand. Accessed: 05/06/2021.
[Online]. Available: https://youtu.be/NykZ-ZSKkxM

[24] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies.”
Association for Computing Machinery, 2017, pp. 51–68.

[25] Z. Zheng, H.-N. Dai, and S. Xie, “Blockchain challenges and
opportunities: A survey,” International Journal of Web and Grid
Services, vol. 14, Jan. 2018.

[26] EOS Consensus Protocol. Accessed: 15/05/2021. [Online]. Avail-
able: https://developers.eos.io/welcome/v2.0/protocol/consensus_
protocol

[27] Bloks.io | fastest eos block explorer and wallet. Accessed:
15/05/2021. [Online]. Available: https://www.bloks.io/

[28] Sharding FAQs. [Online]. Available: https://eth.wiki/sharding/
Sharding-FAQs

Seminar IITM SS 21,
Network Architectures and Services, November 2021 67 doi: 10.2313/NET-2022-01-1_13

[29] Corrupt governance? what we know about
recent eos scandal. Accessed: 15/05/2021.
[Online]. Available: https://cointelegraph.com/news/
corrupt-governance-what-we-know-about-recent-eos-scandal

[30] V. Buterin. Governance, part 2: Plutocracy is still bad. Accessed:
15/05/2021. [Online]. Available: https://vitalik.ca/general/2018/03/

28/plutocracy.html

[31] M. Di Maggio. Liquid staking: A discussion of its risks and bene-
fits. Accessed: 06/06/2021. [Online]. Available: https://web.archive.
org/web/20210606192846/https://medium.com/terra-money/
liquid-staking-a-discussion-of-its-risks-and-benefits-bbaa957d9233

Seminar IITM SS 21,
Network Architectures and Services, November 2021 68 doi: 10.2313/NET-2022-01-1_13

Survey on Back-Pressure Based Routing

Ke Wang, Christoph Schwarzenberg∗, Florian Wiedner∗,
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: 19.ke.wang@tum.de, schwarzenberg@net.in.tum.de, wiedner@net.in.tum.de

Abstract—Back-pressure based routing-algorithms have been
studied extensively. They guarantee throughput optimal-
ity, but have poor delay performance. In this paper, we
focus on wired Ethernet networks and compile a survey
of back-pressure based routing-algorithms. Four variants
are presented in this paper. We address their advantages,
limitations, and possible combinations of different variants.

Index Terms—back-pressure routing, shortest-path, delay
metric, cluster, machine learning

1. Introduction

The back-pressure routing algorithm (BP algorithm)
first introduced by L. Tassiulas and A. Ephremides in [1]
draws many researchers’ attention and has been studied
extensively since then. Although it was initially proposed
for wireless multi-hop radio networks, it can be applied to
wire-line networks. The algorithm directs packets in multi-
hop queuing networks based on congestion gradients.
By exploring all possible routes to balance the loads, it
guarantees network-wide throughput optimality [1].

However, there are still plenty of problems that need
to be solved. As stated in [2], the BP algorithm requires
routers to maintain a separate queue for each destination,
which results in high memory complexity. Another prob-
lem that hinders the deployment of the algorithm is the
poor delay performance. The algorithm works well only
with heavy traffic loads. When the traffic loads are light
or moderate, BP may lead to packets being directed to
unnecessarily long routes or even loops [3].

Since BP guarantees throughput optimality, it has great
potential to be applied in the industry. Therefore, many
variants have been proposed to solve the delay and mem-
ory consumption issues.

2. Related work

In [4], Ying et al. use the shortest path method to avoid
the extensive exploration of paths. In [5], Anurag Rai et
al. propose to use directed acyclic graphs to eliminate
loops in the network, which in turn improves the delay
performance.

In [2], [6], [7], queue structure and management are
improved to reduce the packet delay. In [6], Alresaini
et al. introduce an adaptive redundancy technique that
yields the benefits of replication, while at the same time
preserving the benefits of traditional BP routing algorithm
under high traffic loads. In [7], Ji et al. design a new queue

management policy with a delay parameter. The algorithm
will then select favorable routes by considering both delay
requirements and network throughput. In [8] Bui et al.
design a shadow queuing architecture that improves the
delay performance for the original BP algorithm. In [9]
Athanasopoulou et al. combine BP algorithm with prob-
abilistic routing tables and shadow queues to decouple
routing and scheduling in the network. In [10] Moeller
et al. combine the BP algorithm with the LIFO queuing
discipline. In [11] Huang et al. prove that the algorithm
achieves near-optimal utility-delay trade-off. In [12] Gao
et al. provide a general framework by combining several
parameters addressed above to reduce the delay.

Another approach for improving the algorithm are
delay-based BP algorithms [13]–[16]. In [13], Hai et al.
propose a novel delay metric called sojourn time backlog
and improve the BP algorithm by using this metric instead
of backlog. In [16], Mekkittikul et al. propose a delay-
based approach that uses head-of-line delays instead of
queue lengths. Michael J. Neely analyses the approach
with Lyapunov optimization for one-hop wireless net-
works in [14]. Ji et al. extend the approach to multi-hop
wireless networks [15].

With the great progress in the field of data science,
machine learning provides another solution for improving
the original BP algorithm. In [17], Huang et al. inves-
tigate the benefit of predictive scheduling and establish
a novel queue-equivalence result based on a look-ahead
prediction window model. In [18], Gao et al. combine the
traditional BP algorithm with multi-agent Q-Learning, and
have shown that it reduces the average packet delay by
95% for light traffic loads.

3. Variants of the BP Algorithm

To improve the delay performance and reduce the
memory complexity of the original BP algorithm, we
compare four variants in this section, and present their
method of operation, advantages, and disadvantages.

3.1. Reduce the Path Length

In [4], Ying et al. aim to minimize the average number
of hops per packet delivery, or the average path lengths
between sources and destinations. It has two interpreta-
tions. First, the number of hops can be thought of as
the number of transmissions needed to support traffic.
Minimizing it can be regarded as minimizing the network
resource. Second, the number of hops is related to end-

Seminar IITM SS 21,
Network Architectures and Services, November 2021 69 doi: 10.2313/NET-2022-01-1_14

to-end delay. Decreasing the number of hops results in a
lower delay.

They propose a joint traffic-control and shortest-path-
aided BP algorithm. When the traffic is light, the algorithm
chooses the shortest paths; when the traffic increases,
more paths are exploited to support the traffic. To control
the trade-off between shortest path selection and back
pressure policy, a tuning parameter K is used. When K
becomes quite large, the algorithm only uses the optimal
path. The optimal value of K depends on the networks.
The strategy does not only guarantee network stability
(throughput-optimal), but also adaptively selects the opti-
mal path according to the traffic demand [4].

To study the performance of the algorithm, the authors
implement the simulation using OMNeT++. The setup is
shown in [4]. All intercluster flows have the same arrival
rate denoted by λ (packets/time slot). λ is used to observe
the performance of the algorithm under different traffic
loads. The performance of shortest-path based BP with
different K is shown in Figure 1. A small K results in a
small penalty on long paths. For K = 100, the penalty on
long paths is too large, therefore the algorithm will only
prefer the shorter path without considering the backlog
length.

Figure 1: Simulation Result From [4]

The algorithm is simple and the performance is im-
proved compared to traditional BP. It requires the calcu-
lation of the multiple source multiple destination short-
est path, which can be calculated by Floyd-Warshall in
O(N3). For each node in the network, they need to store
the path information besides the backlog. A pretty similar
approach is also introduced in [9], [19].

Another aspect to reduce the path length is to remove
loops before applying the BP algorithm as shown in [5].
The authors propose to assign directions to the links so
that the network becomes a directed acyclic graph (DAG).
Initially, an arbitrary DAG is generated and then the BP
algorithm is used. When certain links are overloaded, a
new DAG is created by reversing the direction of the links
that point from non-overloaded to overloaded nodes. This
approach avoids loops, thus the end-to-end delay is de-
creased. By iteratively creating new DAGs and performing
BP, the throughput optimality is guaranteed.

3.2. Cluster the Nodes

In [2], Ying et al. show that the end-to-end delay is
decreased without loss of throughput by properly clus-
tering the nodes. The criteria for clustering nodes, e.g.

geometrically by the frequency of information exchange,
does heavily depend on the network. After clustering,
routers need to maintain one queue for each cluster,
therefore the variant also reduces the memory complexity
significantly compared to the original BP algorithm. The
principle is similar to the routing algorithm between dif-
ferent autonomous systems (AS). Packets are sent along
the gateway between different clusters.

The cluster-based BP algorithm consists of three com-
ponents, i.e. traffic controller, regulator, and back-
pressure scheduler. The traffic controller decides the
least congested gateway and how many packets can go
through the gateway. The regulator is for limiting how
many packets can be transferred through a certain gateway.
The back-pressure scheduler decides the best route for
transferring the packets.

The authors simulate the algorithm using OMNeT++.
The setup is shown in [2]. The simulation result is shown
in Figure 2. Cluster-bp-w/o and cluster-bp-w are two
variants of cluster based BP. Both of them are better
than the traditional BP according to the figure. Another
interesting fact is the dramatic increase of delay of the
shortest path algorithm when λ is equal to 0.5. This is
because the algorithm only chooses shortest paths. When
all paths are fully loaded and the traffic still increases, the
delay grows significantly. The authors also propose further
variants of cluster-based BP algorithm, such as multilevel
clustering and combining it with policy-based routing.

Figure 2: Simulation Result From [2]

In [20], the authors introduce a new metric called
greedy back-pressure metric value (GBM). GBM values
are evaluated to route the packets toward gateways in the
direction of the steepest gradient. It uses a combination of
traffic load and the mesh node’s hop count to the nearest
gateway. The authors show that the GBM based back-
pressure algorithm outperforms the traditional BP algo-
rithm. Cluster-based BP can be improved by combining
the GBM method, since the GBM method utilizes the
gateways more efficiently.

Even though the simulation of [2] gives a decent
result, one important problem is how to cluster the nodes
properly. The authors give some suggestions such as clus-
tering nodes according to the network topology or physical
location. But it is still an open question that needs to be
solved.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 70 doi: 10.2313/NET-2022-01-1_14

3.3. Delay Based Algorithm

In [13], the authors introduce a new delay metric called
the sojourn time backlog (STB). The STB considers the
queue length and accumulated packet delays comprehen-
sively. The authors propose an STB-based back-pressure
algorithm called STBP. It applies the BP algorithm based
on the STB. STBP routes the packets to a shorter or
faster path compared to the traditional BP algorithm. The
authors prove that STBP is stable and throughput optimal.

One challenge of implementing STB is to realize
time synchronization (a well-known challenge [21]). For
packets moving between different nodes in the network,
the clocks of these nodes need to be synchronized so that
the sojourn time is correctly recorded. The accuracy of
the synchronization affects the performance significantly.
To overcome the problem, the authors propose to use hop-
count instead of exact sojourn time.

To illustrate the performance, the authors simulate
the algorithm using the NS-2 network simulator. They
compared STBP and STBP-hop based algorithm with
the traditional BP algorithm. The setup is described in
[13]. The performance is shown in Figure 3. Before the
saturated point, all algorithms have similar performance
except STBP. After 100 kb/s, STBP and STBP-hop have
smaller delays compared to traditional BP. Another fact
is that the hop-count (STBP-hop) method performs worse
than the STBP method based on the figure.

Figure 3: Result From [13], traditional BP is denoted as
QBP

In [10], the authors combine the traditional BP al-
gorithm with the LIFO policy. The algorithm transfers
the new packets to their destination with less waiting
time. In [11] the authors improve the algorithm further by
combining the LIFO and the FIFO policy. At every time
slot, the algorithm randomly decides to serve packets from
either the back of the queue or the front of the queue. It
avoids some packets staying in the queue for long time.
The authors prove that the algorithm achieves close-to-
optimal performance and decreases the delay. This kind
of strategy is close to the STBP, which aims to reduce the
waiting time of the packets. It is easier to implement and
does not require synchronization between different nodes.
But it does not always produce the optimal result.

3.4. Combine with Data Science

The fast development of data science draws the at-
tention of researchers in many areas. In [17], [18], the

authors combine machine learning with the traditional BP
algorithm.

In [17], the authors propose a lookahead window
model to pre-allocate rates. The lookahead window, also
called prediction queue, is constructed by the server ac-
cording to the previous packets. The lookahead window
helps the server to use links more efficiently. They perform
the BP algorithm based on the prediction queue. The
authors prove that the algorithm achieves a cost perfor-
mance that is arbitrarily close to the optimality, while
guaranteeing that the average system delay vanishes as
the prediction window size increases. The reason is that
with larger window size, the prediction is more accurate.
They also simulate the algorithm in a 10-user single server
system. The result shows that when the prediction window
size increases, the network delay decreases. However, the
algorithm requires more computational power and more
time to work properly.

Figure 4: Simulation Result from [18]

In [18], the authors use multi-agent Q-learning to
extract biases and based on these biases to perform the BP
algorithm. Q-learning is a variant of reinforcement learn-
ing, it keeps learning based on the environment according
to the reward [22]. Each node in the network estimates
route congestion using local information of the neighbor-
ing nodes. And every node has multiple Q-learning agents
that continuously update its route congestion estimate.
Based on the estimate, every node then directs packets
via the least congested routes to their destinations.

The algorithm is based on the Bias Based General
Framework [12]. The framework consists of three parts,
i.e. information collection, bias extraction, and back-
pressure routing. At the information collection stage, the
framework collects useful information (local or global)
such as queue length, shortest path, and packet delay, for
delay reduction. As for bias extraction, the framework
extracts useful biases. Finally, the BP algorithm directs
packets based on the features from the second stage.

The authors prove that the Q-learning based BP al-
gorithm is throughput optimal. They also simulate the
algorithm to test its performance, the result is shown in
Figure 4. The traditional BP algorithm is denoted as BP,
and QL-BP is the abbreviation for the Q-learning aided
back-pressure algorithm. QL-BP’s delay performance is
much better than original BP.

Since each node extracts the bias based on its local
knowledge, this enables distributed implementation. The

Seminar IITM SS 21,
Network Architectures and Services, November 2021 71 doi: 10.2313/NET-2022-01-1_14

TABLE 1: Overview of all variants

Variant Improvement Challenge

Reduce path length
Shortest path,
Remove loop,

LIFO

Balance delay
and throughput

Cluster nodes Cluster nodes
using gateway How to cluster

Delay based algorithm Delay metric Time synchronization

Data science Prediction Computation,
Distribution

computation complexity is low compared to algorithms
maximizing the weighted sum globally. Even though it
requires computation for extracting biases, but with the
growth of the computational power of the electronic com-
ponents, it provides a good way for improving the back-
pressure algorithm.

4. Summary and Conclusion

We have introduced four variants of BP based algo-
rithms. Table 1 shows the overview of all variants. All
methods reduce the delay compared to the traditional
BP algorithm. The Cluster-based algorithm reduces the
memory complexity. With the rapid development of data
science, machine learning has potential to decrease the
delay further.

There are still challenges. The balance between delay
and throughput is an important problem for path-related
algorithms. As for clustering, how to cluster nodes in the
network properly is still an open question, and it is also
a fundamental requirement for applying the cluster-based
algorithm. To use the delay-based algorithm, it is crucial
to synchronize the time. Otherwise, the nodes are not able
to record the delay of the packets properly and thus the
algorithm cannot work. For machine learning methods,
it requires more computation time, and nodes need to
constantly record the data and update the parameters.

In this paper, we discussed the advantages and disad-
vantages of every variant. Reducing the path length can be
achieved by the shortest path algorithm, removing loops in
networks, using DAGs or LIFO. This variant reduces the
delay when the traffic load is light. Clustering the nodes
properly can reduce the memory complexity and end-to-
end delay. The delay-based algorithm reduces the delay
while guaranteeing throughput optimality. The last variant
is machine learning. Machine learning helps to route the
packets efficiently with near throughput optimality. We
also proposed potential combinations of different variants,
such as combining clustering method with GBM values.

References

[1] L. Tassiulas and A. Ephremides, “Stability Properties of Con-
strained Queueing Systems and Scheduling Policies for Maximum
Throughput in Multihop Radio Networks,” IEEE Transactions on
Automatic Control, vol. 37, no. 12, pp. 1936–1949, 1952.

[2] Ying, Lei and Srikant, R. and Towsley, Don and Liu, Shihuan,
“Cluster-Based Back-Pressure Routing Algorithm,” IEEE/ACM
Transactions on Networking, vol. 19, no. 6, pp. 1773–1786, 2011.

[3] Gao, Juntao and Shen, Yulong and Ito, Minoru and Shiratori,
Norio, “Bias Based General Framework for Delay Reduction in
Backpressure Routing Algorithm,” 2018 International Conference
on Computing, Networking and Communications (ICNC), pp. 215–
219, 2018.

[4] Ying, L. and Shakkottai, S. and Reddy, A., “On Combining
Shortest-Path and Back-Pressure Routing Over Multihop Wireless
Networks,” IEEE INFOCOM 2009, pp. 1674–1682, 2009.

[5] A. Rai and C. Li and G. Paschos and E. Modiano, “Loop-
Free Backpressure Routing Using Link-Reversal Algorithms,”
IEEE/ACM Transactions on Networking, vol. 25, no. 05, pp. 2988–
3002, 2017.

[6] Alresaini, Majed and Sathiamoorthy, Maheswaran and Krishna-
machari, Bhaskar and Neely, Michael J., “Backpressure with Adap-
tive Redundancy (BWAR),” 2012 Proceedings IEEE INFOCOM,
pp. 2300–2308, 2012.

[7] Ji, Zhe and Wang, Youzheng and Lu, Jianhua, “Distributed Delay-
Aware Resource Control and Scheduling in Multihop Wireless
Networks,” 2015 IEEE 82nd Vehicular Technology Conference
(VTC2015-Fall), pp. 1–5, 2015.

[8] Bui, Loc X. and Srikant, R. and Stolyar, Alexander, “A Novel
Architecture for Reduction of Delay and Queueing Structure Com-
plexity in the Back-Pressure Algorithm,” IEEE/ACM Transactions
on Networking, vol. 19, no. 6, pp. 1597–1609, 2011.

[9] Athanasopoulou, Eleftheria and Bui, Loc X. and Ji, Tianxiong
and Srikant, R. and Stolyar, Alexander, “Back-Pressure-Based
Packet-by-Packet Adaptive Routing in Communication Networks,”
IEEE/ACM Transactions on Networking, vol. 21, no. 1, pp. 244–
257, 2013.

[10] Moeller, Scott and Sridharan, Avinash and Krishnamachari,
Bhaskar and Gnawali, Omprakash, “Routing without Routes:
The Backpressure Collection Protocol,” Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in
Sensor Networks, p. 279–290, 2010.

[11] Huang, Longbo and Moeller, Scott and Neely, Michael J. and
Krishnamachari, Bhaskar, “LIFO-Backpressure Achieves Near-
Optimal Utility-Delay Tradeoff,” IEEE/ACM Transactions on Net-
working, vol. 21, no. 3, pp. 831–844, 2013.

[12] Gao, Juntao and Shen, Yulong and Ito, Minoru and Shiratori,
Norio, “Bias Based General Framework for Delay Reduction in
Backpressure Routing Algorithm,” 2018 International Conference
on Computing, Networking and Communications (ICNC), pp. 215–
219, 2018.

[13] Hai, Long and Gao, Qinghua and Wang, Jie and Zhuang, He and
Wang, Ping, “Delay-Optimal Back-Pressure Routing Algorithm for
Multihop Wireless Networks,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 3, pp. 2617–2630, 2018.

[14] Neely, Michael J., “Delay-Based Network Utility Maximization,”
2010 Proceedings IEEE INFOCOM, pp. 1–9, 2010.

[15] Ji, Bo and Joo, Changhee and Shroff, Ness B., “Delay-Based Back-
Pressure Scheduling in Multihop Wireless Networks,” IEEE/ACM
Transactions on Networking, vol. 21, no. 5, pp. 1539–1552, 2013.

[16] McKeown, N. and Mekkittikul, A. and Anantharam, V. and
Walrand, J., “Achieving 100% Throughput in An Input-queued
Switch,” IEEE Transactions on Communications, vol. 47, no. 8,
pp. 1260–1267, 1999.

[17] Huang, Longbo and Zhang, Shaoquan and Chen, Minghua and
Liu, Xin, “When Backpressure Meets Predictive Scheduling,”
IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2237–
2250, 2016.

[18] Juntao Gao and Yulong Shen and Minoru Ito and Norio Shiratori,
“Multi-Agent Q-Learning Aided Backpressure Routing Algorithm
for Delay Reduction,” CoRR, vol. abs/1708.06926, 2017.

[19] Yin, Ping and Yang, Sen and Xu, Jun and Dai, Jim and Lin, Bill,
“Improving Backpressure-based Adaptive Routing via Incremen-
tal Expansion of Routing Choices,” 2017 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems
(ANCS), pp. 1–12, 2017.

[20] Hu, Bin and Gharavi, Hamid, “Greedy Backpressure Routing for
Smart Grid Sensor Networks,” 2014 IEEE 11th Consumer Commu-
nications and Networking Conference (CCNC), pp. 32–37, 2014.

[21] “Time Synchronization,” https://www.cs.usfca.edu/~srollins/
courses/cs686-f08/web/notes/timesync.html.

[22] “An introduction to q-learning: Reinforce-
ment learning,” https://blog.floydhub.com/
an-introduction-to-q-learning-reinforcement-learning/.Seminar IITM SS 21,

Network Architectures and Services, November 2021 72 doi: 10.2313/NET-2022-01-1_14

An Implementation of the Babel Routing Protocol for ns-3

Malte von Ehren, Jonas Andre∗, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: malte.von.ehren@tum.de, andre@net.in.tum.de, wiedner@net.in.tum.de

Abstract—This paper introduces an implementation of the
Babel routing protocol for the discrete event simulator ns-3.
Babel is a relatively new general-purpose routing protocol
with no previously existing implementation in ns-3. This
paper motivates the need for network simulation in general
as well as Babel in particular. We also outline implementa-
tion details and validate the implementation by simulating
network setups with Babel in ns-3 and comparing them with
the expected behavior.

Index Terms—Routing protocols, Routing, Babel Routing
Protocol, ns-3, network simulation

1. Introduction and Related Work

Babel is a robust, general routing protocol, well suited
for both wired and wireless networks. It addresses the
shortcomings of other routing protocols for wireless mesh
routing. Its design makes it loop avoidant and claims to
have faster convergence than similar protocols [1].

Network simulation is an essential tool in network
research as evaluating routing performance and compar-
ing different routing setups in real-world tests is time-
consuming and expensive. Network simulation helps to
investigate the most important properties and can test a
variety of parameters quickly. In the context of routing
protocols, it is, for example, possible to evaluate how
different parameters impact bandwidth usage and conver-
gence time of a routing protocol. Network simulation is
also helpful to familiarize oneself with the operation of
a protocol since one can look at the traces of involved
nodes with little effort. The discrete event simulator ns-3
is a popular network simulator for network research [2].

While different mesh routing protocols like OLSR,
AODV, and DSDV have been compared using ns-3 and
other network simulators, no such effort has been made
with Babel [3], [4]. This is likely due to the absence of an
easily accessible Babel implementation for the simulators
used.

As far as we know there is no prior implementation
of the Babel routing protocol for ns-3. The only other
implementation for any simulation environment seems to
be an implementation for the event simulator OMNeT++
by Veselý et al. [5].

There exist various other routing protocol implemen-
tations for ns-3. Most relevant to this paper is the one
for OLSR, as it has served as a reference regarding
interactions with ns-3 and the structure of the code in
general [6].

2. Background

This section summarizes the aspects of Babel and ns-3
most relevant to this paper.

2.1. Babel

Babel was first published as an Experimental RFC
in 2011 [7] and later in January 2021 as a Standards
Track RFC [1]. Babel is a robust, proactive, loop-avoiding
distance-vector routing protocol, and is suitable for both
wired and wireless networks. Being a proactive routing
protocol implies it preemptively exchanges routing infor-
mation for all prefixes, whether there are any packets
to be routed or not. A routing loop is a phenomenon
where packets get routed in a circle, thereby using up
bandwidth while not reaching their destination. In many
routing protocols routing loops can form. However, the
Babel specification guarantees that no routing loops will
ever form if each prefix is originated by only one router.
In the case that some prefixes are originated by multiple
routers, the specification guarantees that all routing loops
quickly disappear and the same loop can never form
again [1].

Protocol Operation. In the Babel protocol, routers ex-
change packets as UDP datagrams sent to a specific
neighbor or the multicast address specified in the RFC
with a hop count of one. Each packet may contain several
messages, called TLVs (Type-Length-Value). There are 11
different types of TLVs in the RFC. However, the protocol
is extensible and allows for more types of TLVs to be
added. Additionally, most TLVs can contain sub-TLVs.

For neighbor discovery and link quality estimation,
each node periodically sends Hello TLVs. Each node
computes the receiving cost for each neighbor based on
the number of received and missed Hello TLVs from
that neighbor. There are two cost computation strategies
suggested in the RFC. For wired links, the receiving cost
is either a constant value (chosen by the implementation)
if the last k out of j Hellos were received, or infinity
otherwise. In contrast to wired links, wireless links are not
just up or down but have a larger range of link qualities.
Therefore the expected transmission count (ETX) metric
is suggested: the receiving cost is a constant divided by the
fraction of recently correctly received Hellos. This metric
has the advantage to favor short, stable links over long,
lossy links, which a hop-count-based metric favors [1],
[8]. The node regularly sends this receiving cost back to

Seminar IITM SS 21,
Network Architectures and Services, November 2021 73 doi: 10.2313/NET-2022-01-1_15

the neighbor inside an IHU TLV (I Heard You). This is
necessary since links are not generally symmetric.

Babel can carry prefixes and is, therefore, able to do
prefix-based routing. However, its design assumes that
each node has a full routing table (to all of the nodes in
the network) and is therefore well suited for mesh routing.

The protocol has specific optimizations used on sym-
metric wired links. For example, it will not resend an
update received on a point-to-point link on the same link.

To ensure the strict properties regarding routing loops
described above, Babel combines concepts from different
routing protocols. The idea Babel uses to (almost) entirely
avoid routing loops is the concept of feasibility. Each
node maintains for each source (prefix and its originating
router) a feasibility distance. This "distance" consists of
the newest seqno (sequence number) of the route and the
best distance the node has ever announced for this source
with the current seqno.

When receiving an update from an Update TLV, a
router checks whether the received route has either a
newer sequence number or a smaller metric than any it
has ever announced. If so, it can be sure not to cause a
routing loop by switching to this route. When the topology
changes, it might be the case that a router has no feasible
routes left. In that case, it sends a seqno request, triggering
the source of the route to increment its seqno. After
incrementing the seqno, the new route gets forwarded to
the router that sent the seqno request [1].

Applications. Babel routers exchange routing information
even when there is no mobility event, thus potentially
generating unnecessary traffic. Therefore Babel is not the
ideal choice for routing in some situations such as large
and stable networks and low-power networks. However,
Babel is a robust protocol and can be successfully used in
most environments. The most prominent use cases include
small home networks, heterogeneous networks, and mesh
networks [8]

Performance. For the application of mesh networks, mul-
tiple experiments conclude that Babels performance is at
least comparable - if not better - than specialized mesh
routing protocols such as OLSR and BATMAN [9]–[12].

2.2. ns-3

ns-3 is an open-source network simulator first pub-
lished in 2008 as the successor to the popular network
simulator ns2 [13]. It is one of the most widely used
network simulators serving as a tool to many network
researchers. Like most network simulators, ns-3 is a
discrete, event-based simulator: the simulation time is
stepped from one event to the next and at each step, all
necessary calculations are performed. In terms of both
memory usage and computation time, ns-3 is a highly
performant simulator capable of large-scale simulations
with hundreds or thousands of nodes. It tries to provide
a realistic simulation of all network components such as
the IP stack or network devices [14].

ns-3 is written in C++ and is structured into modules
responsible for different aspects of the simulation. Each
with its own tests, examples, and documentation.

3. Implementation

This section outlines the most important aspects of
our implementation of the Babel routing protocol for ns-
3. Since it is recommended in the Babel RFC to route all
control traffic via IPv6, the protocol is implemented as an
IPv6 routing protocol.

The implementation is written in C++ and the structure
is partially based on the OLSR module included in ns-3
[6]. We provide a new module called babel consisting
of a simple example network, a helper class to install
Babel on existing ns-3 nodes, and the implementation of
the protocol itself. The main functionality is located in-
side the ns3::babel::RoutingProtocol class, which ex-
tends ns3::Ipv6RoutingProtocol. To route IPv6 pack-
ets, the methods RouteOutput and RouteInput are called
by the ns-3 IP-stack for outbound and inbound pack-
ets respectively. The ns3::babel::PacketHeader and
ns3::babel::TLV classes are responsible for serializing
and deserializing Babel packets and the TLVs contained
inside them.

ns-3 includes a TypeId feature used by the helper class
to construct protocol instances. We can add attributes with
default values to our TypeId, which are used to initialize
the objects. This feature is essential since it allows the
creator of a simulation to set specific protocol parameters
for all nodes or individual nodes. The default values are
taken from the RFC. Tunable protocol parameters are, for
example, the time intervals used for sending scheduled
Hello, IHU, and Update TLVs, as well as the (urgent)
timeout for sending messages.

The periodic sending of Hello, IHU, and Update TLVs
is governed by Timers set to times specified by the at-
tributes. When a timer expires, we queue the required
TLVs for sending on each interface.

To aggregate multiple TLVs into one packet and to
apply randomization to the timing of messages, we keep
track of a list of queued TLVs and a timer for each in-
terface. Instead of sending a message directly, we instead
add it to the queue for later sending and set the timer if
it was not already (the timer duration is random within a
range specified by the attributes). When the timer expires,
it calls a method for sending the packet. This mechanism
also allows for the sending of "urgent TLVs" within a
shorter timeout. Upon queuing an urgent TLV, the timer
is rescheduled to be inside the "urgent timeout" (if it was
not already).

The protocol encoding optimizes the size of the pack-
ets by not sending redundant information inside each
TLV. For example, the Update TLV might not contain
the router-id of the router originating this particular route
update but relies on a Router-Id TLV preceding it. To fol-
low the encoding, we need to keep track of a parser state
for incoming and outgoing packets. Therefore, alongside
the queue and timer, we keep track of the parser state
of the outgoing packet for each interface. This allows,
for example, an Update TLV to add a Router-Id TLV if
there was no Router-Id TLV yet or the last Router-Id TLV
contained a different router-id.

To receive packets, there is a receiving UDP socket
set to listen on the specified multicast address. When
a UDP datagram arrives (either as multicast or uni-
cast), the Babel packet in the datagram is delivered

Seminar IITM SS 21,
Network Architectures and Services, November 2021 74 doi: 10.2313/NET-2022-01-1_15

by the ns-3 IP-stack to a callback method inside the
ns3::babel::RoutingProtocol class. Inside this call-
back method, we deserialize the packet and, while keeping
track of the parser state, loop over all TLVs contained
inside. If there are any TLVs that require the selected
routes to be recomputed, this is done once after all TLVs
are processed. The recomputation of the routes may lead
to the queuing of new Update TLVs.

The nodes compute their receiving cost using the
ETX algorithm outlined in Section 2.1 as the strategy for
wireless links.

When routing packets, we need to find the route for
the longest matching prefix of the destination address. The
route table is a map with the prefix as the key, To allow
for fast lookups of routes based on their prefix. Since we
do not know the length of the longest prefix and looping
over all 128 possible could be costly, we maintain a list
of all the prefix lengths we currently store and loop over
it instead. A further optimization would be to maintain a
tree structure for finding the longest matching prefix or
cache route lookups.

Furthermore, we may know of multiple routes for one
prefix and, although only one is selected, it is necessary to
keep track of the other ones as fallback routes. Maintain-
ing (for each prefix) a list of routes with a pointer to the
currently selected one solves this problem while keeping
fast access to the selected route.

During the simulation setup in ns-3, when installing
the Babel routing protocol on a node using the Babel
helper class, it is possible to exclude interfaces from the
Babel protocol. This way, a network of Babel nodes can
link to the other nodes, possibly using another routing
protocol. All Babel nodes originate all of their global
addresses as well as the prefixes of the excluded interfaces.
To illustrate, consider the network in Figure 1, where R
and A are Babel nodes and S is another server.

S R A
2001:1::/64 2001:2::/64

Figure 1: Network Topology

During the setup of R, its left interface (to S) has been
excluded from Babel routing. Therefore, R originates the
prefix of this network (2001:1::/64) along with its global
addresses.

3.1. Capabilities

Our implementation is a working IPv6 routing proto-
col for ns-3. Considering the only other routing protocol
for IPv6 is currently ns3::Ipv6StaticRouting, just hav-
ing a non-static routing protocol might already be helpful
in some [15] scenarios.

The main point of the implementation, and hence its
most relevant capability, is to accurately depict the behav-
ior of Babel inside ns-3. This is achieved by following the
specification and further demonstrated in Section 4.

The use of ns-3 attributes makes it easy to tune proto-
col parameters to meet the needs of a specific simulation.
A performance comparison with different protocol param-
eters is also possible.

Since ns-3 has the option to trace all packets to a
file and we serialize all packets as described by the
specification, it is possible to use a tool such as Wireshark
to inspect Babel packets exchanged during a simulation.

3.2. Limitations

The goal of the current implementation is to provide a
working version of Babel for simulations of the protocol
behavior in different environments. As of now, it is lacking
some features and does not yet comply with all aspects of
the RFC. Most aspects of non-compliance are not an issue
since they are not strictly required for the protocol, and
our protocol instances only communicate with other nodes
inside ns-3 using the identical implementation. In other
words, for simulations inside ns-3, no interoperability with
other protocol implementations is needed.

Most notably, the routing protocol is currently an
IPv6 routing protocol and only supports IPv6 traffic.
The recommended way to use Babel is to have a single
protocol instance that routes IPv4 and IPv6 traffic but
communicates exclusively using IPv6 [1]. Such behavior
can most likely be achieved in ns-3. However, since most
simulations use either IPv4 or IPv6 it would be desirable
to have a standalone IPv4 implementation as well.

There is currently no recognition of Sub-TLVs, Uni-
cast Hellos, Acknowledgments, Acknowledgment Re-
quests and some encoding methods as defined in the RFC.
As mentioned before, if this implementation does not need
to interoperate with others this is not a problem.

4. Tests

To demonstrate the functionality of the implementa-
tion, we devised a test scenario. The setup consists of 6
nodes connected on six point-to-point links as shown in
Figure 2. Nodes R, A, B, C, and D are Babel routers. After
allowing the protocol a brief initialization time, nodes A,
B, C, and D start emitting 20 UDP packets per second to
S. At 35 seconds into the simulation they stop sending
the packets. At 20 seconds, the link between R and A gets
cut. To route packets to S, the routers use their routes to
2001:6::/64, a prefix originated by R.

R

A B

CD

S 2001:6::/64

Figure 2: Network topology under test

Node S tracks the number of packets arriving, and its
results are shown in Figure 3. While this graph illustrates
the routes leading to S, the protocol also tracks all other
routes, which are not visualized here. For clarity, the
packets from C and D are not shown since they are not
affected by the link being cut and all packets arrive as
expected.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 75 doi: 10.2313/NET-2022-01-1_15

0 10 20 30 40
0

2

4

6

8

10

Time [s]

Pa
ck

et
s

re
ce

iv
ed

pe
r

0.
5s

from A
from B

Figure 3: Packets Received at S

Just before cutting the link, node B has two routes
to 2001:6::/64 (and therefore S). One route via C and
another via A. When A detects the link is cut, it sends
a route retraction for all routes it would forward to R.
When receiving this retraction, B switches to its route
via C and sends an update. A can, however, not switch
to this route via C, as it is not feasible. Essentially, A
has no way of knowing that adopting this route would
not create a routing loop. Left with no routes, A sends a
seqno request, which gets forwarded by B, C, and D, until
it reaches R. R increments its seqno and sends an update
with the new seqno, which is quickly forwarded back to
A. After receiving an update with the new seqno, A can
now switch to a route via B. During the time it takes the
seqno request and updates to go around the network, A
has no route to 2001:6::/64 (and therefore S). This can
be seen in Figure 3 as the drop in packets received from
A. The increased number of packets traveling to S via D
is still below the capacity of the links, so there is no drop
in the packets received from the other nodes.

And the end, the route table of A for routes to
2001:6::/64 looks as follows (advertised metric is the
metric announced by the neighbor. The cost of a route
is the advertised metrix plus the cost of the link to the
neighbor):

• next hop: fe80::200:ff:fe00:4;
advertised metric: 768; seqno: 0x8001

• next hop: fe80::200:ff:fe00:1;
advertised metric: 0; seqno: 0x8000

fe80::200:ff:fe00:4 is the link-local address of an
interface of B. This is the selected route with a seqno
one higher than the other route. fe80::200:ff:fe00:1
is the link-local address of an interface of R. Although
the advertised metric is 0, the metric overall is infinity
since the link cost from A to R is infinity.

5. Conclusion and Future Work

This paper introduced an implementation of the Babel
routing protocol for the discrete event simulator ns-3. This
implementation can be used to help research applications
and the performance of Babel using ns-3.

Although the current state of our work suffices to
simulate the operation of Babel, it is desirable to finish
the implementation to comply with the RFC (see Section
3.2).

To fulfill the goal of providing an easy way to simulate
the behavior of the Babel protocol, the behavior inside

the simulation must match the behavior in the real world.
Therefore, it is vital to validate the results from the
simulation with results obtained in the real world. This
requires either carrying out hardware tests or recreating
an existing test setup inside the simulator.

An interesting idea, which would be easy to test now,
is writing an extension to optimize protocol performance
in fast-moving mobile ad-hoc networks by relaying posi-
tion information through the protocol. A similar idea using
a custom OLSR implementation shows promising results
in [16], and it is interesting to see how that compares to
a Babel version.

References

[1] J. Chroboczek and D. Schinazi, “The babel routing protocol,”
Internet Requests for Comments, RFC Editor, RFC 8966, January
2021.

[2] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demon-
stration, vol. 14, no. 14, p. 527, 2008.

[3] D. Bhatia and D. P. Sharma, “A comparative analysis of proactive,
reactive and hybrid routing protocols over open source network
simulator in mobile ad hoc network,” International Journal of
Applied Engineering Research, vol. 11, no. 6, pp. 3885–3896,
2016.

[4] R. K. Jha and P. Kharga, “A comparative performance analysis
of routing protocols in manet using ns3 simulator,” International
Journal of Computer Network and Information Security, vol. 7,
no. 4, pp. 62–68, 2015.

[5] V. Veselý, V. Rek, and O. Ryšavý, “Babel routing protocol for
omnet++ - more than just a new simulation module for inet
framework,” 2016.

[6] “Optimized Link State Routing (OLSR) — Model Library - NS-
3,” https://www.nsnam.org/docs/models/html/olsr.html, accessed:
2021-06-12.

[7] J. Chroboczek, “The babel routing protocol,” Internet Requests for
Comments, RFC Editor, RFC 6126, April 2011.

[8] ——, “Applicability of the babel routing protocol,” Internet Re-
quests for Comments, RFC Editor, RFC 8965, January 2021.

[9] D. Murray, M. Dixon, and T. Koziniec, “An experimental com-
parison of routing protocols in multi hop ad hoc networks,” in
2010 Australasian Telecommunication Networks and Applications
Conference, 2010, pp. 159–164.

[10] M. E. Villapol, D. Pérez Abreu, C. Balderama, and M. Colombo,
“Comparación del rendimiento de los protocolos de enrutamiento
para redes malladas en una red experimental con restricciones de
ancho de banda en el enrutador del borde,” Revista de la Facultad
de Ingeniería Universidad Central de Venezuela, vol. 28, no. 1, pp.
7–13, 2013.

[11] M. Abolhasan, B. Hagelstein, and J.-P. Wang, “Real-world per-
formance of current proactive multi-hop mesh protocols,” in 2009
15th Asia-Pacific Conference on Communications. IEEE, 2009,
pp. 44–47.

[12] J. Pramod, K. Sahana, A. Akshay, and V. Talasila, “Characteriza-
tion of wireless mesh network performance in an experimental test
bed,” in 2015 IEEE International Advance Computing Conference
(IACC). IEEE, 2015, pp. 910–914.

[13] “ns-2 and ns-3,” https://www.nsnam.org/support/faq/ns2-ns3/, ac-
cessed: 2021-06-10.

[14] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in 2009 IEEE Interna-
tional Conference on Communications. IEEE, 2009, pp. 1–5.

[15] “Ipv6 - model library - ns-3,” https://www.nsnam.org/docs/models/
html/ipv6.html, accessed: 2021-06-10.

[16] S. Sharma, “P-OLSR: Position-based optimized link state routing
for mobile ad hoc networks,” in 2009 IEEE 34th Conference on
Local Computer Networks. IEEE, 2009, pp. 237–240.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 76 doi: 10.2313/NET-2022-01-1_15

ISBN 978-3-937201-73-3

9 783937 201733

ISBN 978-3-937201-73-3
DOI 10.2313/NET-2022-01-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Simulation of WiFi Networks on Hardware
	Challenges with BGPSec
	Asynchonous Traffic Shaping with Linux traffic control
	Certificate Revocation
	Optimizations for Secure Multiparty Computation Protocols
	Recent Activity in P4
	A Survey on Domain Impersonation
	Analysis of Wikipedia External Links
	Survey on SR-IOV performance
	Towards General Sliding Window Stream Analysis
	Tracing the Execution Path in mac80211
	TCP Congestion Control Fingerprinting
	Analysis of PoS Flavors With Regards To The Scalability Trilemma
	Survey on Back-Pressure Based Routing
	An Implementation of the Babel Routing Protocol for ns3

